overte/tests/shared/src/GeometryUtilTests.cpp
2016-12-28 18:10:45 -08:00

284 lines
12 KiB
C++

//
// GeometryUtilTests.cpp
// tests/shared/src
//
// Created by Andrew Meadows on 2015.07.27
// Copyright 2015 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include <iostream>
#include "GeometryUtilTests.h"
#include <GeometryUtil.h>
#include <GLMHelpers.h>
#include <NumericalConstants.h>
#include <StreamUtils.h>
#include <../QTestExtensions.h>
QTEST_MAIN(GeometryUtilTests)
static void testSphereVsCone(const glm::vec3 coneNormal, const glm::vec3 coneBiNormal, float coneAngle, float sphereRadius, float sphereDistance) {
glm::vec3 u, v, w;
generateBasisVectors(coneNormal, coneBiNormal, u, v, w);
glm::vec3 coneEdge = u * cosf(coneAngle) + v * sinf(coneAngle);
glm::vec3 coneCenter = glm::vec3(0.0f, 0.0f, 0.0f);
glm::vec3 sphereCenter = coneCenter + coneEdge * sphereDistance;
float result = coneSphereAngle(coneCenter, u, sphereCenter, sphereRadius);
QCOMPARE(isnan(result), false);
QCOMPARE(result < coneAngle, true);
// push sphere outward from edge so it is tangent to the cone.
glm::vec3 sphereOffset = glm::angleAxis(PI / 2.0f, w) * coneEdge;
sphereCenter += sphereOffset * sphereRadius;
result = coneSphereAngle(coneCenter, u, sphereCenter, sphereRadius);
QCOMPARE(isnan(result), false);
QCOMPARE_WITH_ABS_ERROR(result, coneAngle, 0.001f);
// push sphere outward from edge a bit further, so it is outside of the cone.
sphereCenter += 0.1f * sphereOffset;
result = coneSphereAngle(coneCenter, u, sphereCenter, sphereRadius);
QCOMPARE(isnan(result), false);
QCOMPARE(result > coneAngle, true);
}
void GeometryUtilTests::testConeSphereAngle() {
// start with a 45 degree cone.
testSphereVsCone(glm::vec3(1.0f, 0.0f, 0.0f), glm::vec3(0.0f, 1.0f, 0.0f), PI / 4.0f, 1.0f, 10.0f);
// test 30 degree cone.
testSphereVsCone(glm::vec3(1.0f, 0.0f, 0.0f), glm::vec3(0.0f, 1.0f, 0.0f), PI / 6.0f, 1.0f, 10.0f);
// test 60 degree cone.
testSphereVsCone(glm::vec3(1.0f, 0.0f, 0.0f), glm::vec3(0.0f, 1.0f, 0.0f), PI / 3.0f, 1.0f, 10.0f);
// test 120 degree cone.
testSphereVsCone(glm::vec3(1.0f, 0.0f, 0.0f), glm::vec3(0.0f, 1.0f, 0.0f), 2 * PI / 3.0f, 1.0f, 10.0f);
// test skinny cone.
testSphereVsCone(glm::vec3(1.0f, 0.0f, 0.0f), glm::vec3(0.0f, 1.0f, 0.0f), 0.0001f, 1.0f, 10.0f);
// start again with a 45 off axis cone.
testSphereVsCone(glm::vec3(1.0f, 1.0f, 1.0f), glm::vec3(0.0f, 1.0f, 0.0f), PI / 4.0f, 1.0f, 10.0f);
// test 30 degree off axis cone
testSphereVsCone(glm::vec3(1.0f, 1.0f, 1.0f), glm::vec3(0.0f, 1.0f, 0.0f), PI / 6.0f, 1.0f, 10.0f);
// test 60 degree cone off axis cone
testSphereVsCone(glm::vec3(1.0f, 1.0f, 1.0f), glm::vec3(0.0f, 1.0f, 0.0f), PI / 3.0f, 1.0f, 10.0f);
// test 120 degree off axis cone.
testSphereVsCone(glm::vec3(1.0f, 1.0f, 1.0f), glm::vec3(0.0f, 1.0f, 0.0f), 2 * PI / 3.0f, 1.0f, 10.0f);
// test skinny off-axis cone.
testSphereVsCone(glm::vec3(1.0f, 1.0f, 1.0f), glm::vec3(0.0f, 1.0f, 0.0f), 0.0001f, 1.0f, 10.0f);
}
void GeometryUtilTests::testLocalRayRectangleIntersection() {
glm::vec3 xAxis(1.0f, 0.0f, 0.0f);
glm::vec3 yAxis(0.0f, 1.0f, 0.0f);
glm::vec3 zAxis(0.0f, 0.0f, 1.0f);
// create a rectangle in the local frame on the XY plane with normal along -zAxis
// (this is the assumed local orientation of the rectangle in findRayRectangleIntersection())
glm::vec2 rectDimensions(3.0f, 5.0f);
glm::vec3 rectCenter(0.0f, 0.0f, 0.0f);
glm::quat rectRotation = glm::quat(); // identity
{ // verify hit
glm::vec3 rayStart(1.0f, 2.0f, 3.0f);
float delta = 0.1f;
glm::vec3 rayEnd = rectCenter + rectRotation * ((0.5f * rectDimensions.x - delta) * xAxis);
glm::vec3 rayHitDirection = glm::normalize(rayEnd - rayStart);
float expectedDistance = glm::length(rayEnd - rayStart);
float distance = FLT_MAX;
bool hit = findRayRectangleIntersection(rayStart, rayHitDirection, rectRotation, rectCenter, rectDimensions, distance);
QCOMPARE(hit, true);
QCOMPARE_WITH_ABS_ERROR(distance, expectedDistance, EPSILON);
}
{ // verify miss
glm::vec3 rayStart(1.0f, 2.0f, 3.0f);
float delta = 0.1f;
glm::vec3 rayEnd = rectCenter + rectRotation * ((0.5f * rectDimensions.y + delta) * yAxis);
glm::vec3 rayMissDirection = glm::normalize(rayEnd - rayStart);
float distance = FLT_MAX;
bool hit = findRayRectangleIntersection(rayStart, rayMissDirection, rectRotation, rectCenter, rectDimensions, distance);
QCOMPARE(hit, false);
QCOMPARE(distance, FLT_MAX); // distance should be unchanged
}
{ // hit with co-planer line
float yFraction = 0.25f;
glm::vec3 rayStart = rectCenter + rectRotation * (rectDimensions.x * xAxis + yFraction * rectDimensions.y * yAxis);
glm::vec3 rayEnd = rectCenter - rectRotation * (rectDimensions.x * xAxis - yFraction * rectDimensions.y * yAxis);
glm::vec3 rayHitDirection = glm::normalize(rayEnd - rayStart);
float expectedDistance = rectDimensions.x;
float distance = FLT_MAX;
bool hit = findRayRectangleIntersection(rayStart, rayHitDirection, rectRotation, rectCenter, rectDimensions, distance);
QCOMPARE(hit, true);
QCOMPARE_WITH_ABS_ERROR(distance, expectedDistance, EPSILON);
}
{ // miss with co-planer line
float yFraction = 0.75f;
glm::vec3 rayStart = rectCenter + rectRotation * (rectDimensions.x * xAxis + (yFraction * rectDimensions.y) * yAxis);
glm::vec3 rayEnd = rectCenter - rectRotation * (rectDimensions.x * xAxis - (yFraction * rectDimensions.y) * yAxis);
glm::vec3 rayHitDirection = glm::normalize(rayEnd - rayStart);
float distance = FLT_MAX;
bool hit = findRayRectangleIntersection(rayStart, rayHitDirection, rectRotation, rectCenter, rectDimensions, distance);
QCOMPARE(hit, false);
QCOMPARE(distance, FLT_MAX); // distance should be unchanged
}
}
void GeometryUtilTests::testWorldRayRectangleIntersection() {
glm::vec3 xAxis(1.0f, 0.0f, 0.0f);
glm::vec3 yAxis(0.0f, 1.0f, 0.0f);
glm::vec3 zAxis(0.0f, 0.0f, 1.0f);
// create a rectangle in the local frame on the XY plane with normal along -zAxis
// (this is the assumed local orientation of the rectangle in findRayRectangleIntersection())
// and then rotate and shift everything into the world frame
glm::vec2 rectDimensions(3.0f, 5.0f);
glm::vec3 rectCenter(0.7f, 0.5f, -0.3f);
glm::quat rectRotation = glm::quat(); // identity
// create points for generating rays that hit the plane and don't
glm::vec3 rayStart(1.0f, 2.0f, 3.0f);
float delta = 0.1f;
{ // verify hit
glm::vec3 rayEnd = rectCenter + rectRotation * ((0.5f * rectDimensions.x - delta) * xAxis);
glm::vec3 rayHitDirection = glm::normalize(rayEnd - rayStart);
float expectedDistance = glm::length(rayEnd - rayStart);
float distance = FLT_MAX;
bool hit = findRayRectangleIntersection(rayStart, rayHitDirection, rectRotation, rectCenter, rectDimensions, distance);
QCOMPARE(hit, true);
QCOMPARE_WITH_ABS_ERROR(distance, expectedDistance, EPSILON);
}
{ // verify miss
glm::vec3 rayEnd = rectCenter + rectRotation * ((0.5f * rectDimensions.y + delta) * yAxis);
glm::vec3 rayMissDirection = glm::normalize(rayEnd - rayStart);
float distance = FLT_MAX;
bool hit = findRayRectangleIntersection(rayStart, rayMissDirection, rectRotation, rectCenter, rectDimensions, distance);
QCOMPARE(hit, false);
QCOMPARE(distance, FLT_MAX); // distance should be unchanged
}
{ // hit with co-planer line
float yFraction = 0.25f;
rayStart = rectCenter + rectRotation * (rectDimensions.x * xAxis + (yFraction * rectDimensions.y) * yAxis);
glm::vec3 rayEnd = rectCenter - rectRotation * (rectDimensions.x * xAxis - (yFraction * rectDimensions.y) * yAxis);
glm::vec3 rayHitDirection = glm::normalize(rayEnd - rayStart);
float expectedDistance = rectDimensions.x;
float distance = FLT_MAX;
bool hit = findRayRectangleIntersection(rayStart, rayHitDirection, rectRotation, rectCenter, rectDimensions, distance);
QCOMPARE(hit, true);
QCOMPARE_WITH_ABS_ERROR(distance, expectedDistance, EPSILON);
}
{ // miss with co-planer line
float yFraction = 0.75f;
rayStart = rectCenter + rectRotation * (rectDimensions.x * xAxis + (yFraction * rectDimensions.y) * yAxis);
glm::vec3 rayEnd = rectCenter - rectRotation * (rectDimensions.x * xAxis - (yFraction * rectDimensions.y) * yAxis);
glm::vec3 rayHitDirection = glm::normalize(rayEnd - rayStart);
float distance = FLT_MAX;
bool hit = findRayRectangleIntersection(rayStart, rayHitDirection, rectRotation, rectCenter, rectDimensions, distance);
QCOMPARE(hit, false);
QCOMPARE(distance, FLT_MAX); // distance should be unchanged
}
}
void GeometryUtilTests::testTwistSwingDecomposition() {
// for each twist and swing angle pair:
// (a) compute twist and swing input components
// (b) compose the total rotation
// (c) decompose the total rotation
// (d) compare decomposed values with input components
glm::vec3 xAxis(1.0f, 0.0f, 0.0f);
glm::vec3 twistAxis = glm::normalize(glm::vec3(1.0f, 2.0f, 3.0f)); // can be anything but xAxis
glm::vec3 initialSwingAxis = glm::normalize(glm::cross(xAxis, twistAxis)); // initialSwingAxis must be perp to twistAxis
const int numTwists = 6;
const int numSwings = 7;
const int numSwingAxes = 5;
const float smallAngle = PI / 100.0f;
const float maxTwist = PI;
const float minTwist = -PI;
const float minSwing = 0.0f;
const float maxSwing = PI;
const float deltaTwist = (maxTwist - minTwist - 2.0f * smallAngle) / (float)(numTwists - 1);
const float deltaSwing = (maxSwing - minSwing - 2.0f * smallAngle) / (float)(numSwings - 1);
for (float twist = minTwist + smallAngle; twist < maxTwist; twist += deltaTwist) {
// compute twist component
glm::quat twistRotation = glm::angleAxis(twist, twistAxis);
float deltaTheta = TWO_PI / (numSwingAxes - 1);
for (float theta = 0.0f; theta < TWO_PI; theta += deltaTheta) {
// compute the swingAxis
glm::quat thetaRotation = glm::angleAxis(theta, twistAxis);
glm::vec3 swingAxis = thetaRotation * initialSwingAxis;
for (float swing = minSwing + smallAngle; swing < maxSwing; swing += deltaSwing) {
// compute swing component
glm::quat swingRotation = glm::angleAxis(swing, swingAxis);
// compose
glm::quat totalRotation = swingRotation * twistRotation;
// decompose
glm::quat measuredTwistRotation;
glm::quat measuredSwingRotation;
swingTwistDecomposition(totalRotation, twistAxis, measuredSwingRotation, measuredTwistRotation);
// dot decomposed with components
float twistDot = fabsf(glm::dot(twistRotation, measuredTwistRotation));
float swingDot = fabsf(glm::dot(swingRotation, measuredSwingRotation));
// the dot products should be very close to 1.0
const float MIN_ERROR = 1.0e-6f;
QCOMPARE_WITH_ABS_ERROR(1.0f, twistDot, MIN_ERROR);
QCOMPARE_WITH_ABS_ERROR(1.0f, swingDot, MIN_ERROR);
}
}
}
}
void GeometryUtilTests::testSphereCapsulePenetration() {
glm::vec3 sphereCenter(1.5, 0.0, 0.0);
float sphereRadius = 1.0f;
glm::vec3 capsuleStart(0.0f, -10.0f, 0.0f);
glm::vec3 capsuleEnd(0.0f, 10.0f, 0.0f);
float capsuleRadius = 1.0f;
glm::vec3 penetration(0.0f);
bool hit = findSphereCapsulePenetration(sphereCenter, sphereRadius, capsuleStart, capsuleEnd, capsuleRadius, penetration);
QCOMPARE(hit, true);
QCOMPARE_WITH_ABS_ERROR(penetration, glm::vec3(-0.5f, 0.0f, 0.0f), EPSILON);
}