overte/interface/src/VoxelSystem.cpp
2013-04-01 15:12:39 -07:00

284 lines
11 KiB
C++

//
// Cube.cpp
// interface
//
// Created by Philip on 12/31/12.
// Copyright (c) 2012 High Fidelity, Inc. All rights reserved.
//
#include <cstring>
#include <cmath>
#include <iostream> // to load voxels from file
#include <fstream> // to load voxels from file
#include <SharedUtil.h>
#include <OctalCode.h>
#include "VoxelSystem.h"
const int MAX_VOXELS_PER_SYSTEM = 1500000; //250000;
const int VERTICES_PER_VOXEL = 8;
const int VERTEX_POINTS_PER_VOXEL = 3 * VERTICES_PER_VOXEL;
const int INDICES_PER_VOXEL = 3 * 12;
float identityVertices[] = { 0, 0, 0,
1, 0, 0,
1, 1, 0,
0, 1, 0,
0, 0, 1,
1, 0, 1,
1, 1, 1,
0, 1, 1 };
GLubyte identityIndices[] = { 0,1,2, 0,2,3,
0,1,5, 0,4,5,
0,3,7, 0,4,7,
1,2,6, 1,5,6,
2,3,7, 2,6,7,
4,5,6, 4,6,7 };
VoxelSystem::VoxelSystem() {
voxelsRendered = 0;
tree = new VoxelTree();
pthread_mutex_init(&bufferWriteLock, NULL);
}
VoxelSystem::~VoxelSystem() {
delete[] readVerticesArray;
delete[] writeVerticesArray;
delete[] readColorsArray;
delete[] writeColorsArray;
delete tree;
pthread_mutex_destroy(&bufferWriteLock);
}
void VoxelSystem::setViewerHead(Head *newViewerHead) {
viewerHead = newViewerHead;
}
//////////////////////////////////////////////////////////////////////////////////////////
// Method: VoxelSystem::loadVoxelsFile()
// Description: Loads HiFidelity encoded Voxels from a binary file. The current file
// format is a stream of single voxels with NO color data. Currently
// colors are set randomly
// Complaints: Brad :)
// To Do: Need to add color data to the file.
void VoxelSystem::loadVoxelsFile(const char* fileName, bool wantColorRandomizer) {
tree->loadVoxelsFile(fileName,wantColorRandomizer);
copyWrittenDataToReadArrays();
}
//////////////////////////////////////////////////////////////////////////////////////////
// Method: VoxelSystem::createSphere()
// Description: Creates a sphere of voxels in the local system at a given location/radius
// To Do: Move this function someplace better? I put it here because we need a
// mechanism to tell the system to redraw it's arrays after voxels are done
// being added. This is a concept mostly only understood by VoxelSystem.
// Complaints: Brad :)
void VoxelSystem::createSphere(float r,float xc, float yc, float zc, float s, bool solid, bool wantColorRandomizer) {
tree->createSphere(r,xc,yc,zc,s,solid,wantColorRandomizer);
setupNewVoxelsForDrawing();
}
void VoxelSystem::parseData(void *data, int size) {
// output the bits received from the voxel server
unsigned char *voxelData = (unsigned char *) data + 1;
// ask the VoxelTree to read the bitstream into the tree
tree->readBitstreamToTree(voxelData, size - 1);
setupNewVoxelsForDrawing();
}
void VoxelSystem::setupNewVoxelsForDrawing() {
// reset the verticesEndPointer so we're writing to the beginning of the array
writeVerticesEndPointer = writeVerticesArray;
// call recursive function to populate in memory arrays
// it will return the number of voxels added
float treeRoot[3] = {0,0,0};
voxelsRendered = treeToArrays(tree->rootNode, treeRoot);
// copy the newly written data to the arrays designated for reading
copyWrittenDataToReadArrays();
}
void VoxelSystem::copyWrittenDataToReadArrays() {
// lock on the buffer write lock so we can't modify the data when the GPU is reading it
pthread_mutex_lock(&bufferWriteLock);
// store a pointer to the current end so it doesn't change during copy
GLfloat *endOfCurrentVerticesData = writeVerticesEndPointer;
// copy the vertices and colors
memcpy(readVerticesArray, writeVerticesArray, (endOfCurrentVerticesData - writeVerticesArray) * sizeof(GLfloat));
memcpy(readColorsArray, writeColorsArray, (endOfCurrentVerticesData - writeVerticesArray) * sizeof(GLubyte));
// set the read vertices end pointer to the correct spot so the GPU knows how much to pull
readVerticesEndPointer = readVerticesArray + (endOfCurrentVerticesData - writeVerticesArray);
pthread_mutex_unlock(&bufferWriteLock);
}
int VoxelSystem::treeToArrays(VoxelNode *currentNode, float nodePosition[3]) {
int voxelsAdded = 0;
float halfUnitForVoxel = powf(0.5, *currentNode->octalCode) * (0.5 * TREE_SCALE);
glm::vec3 viewerPosition = viewerHead->getPos();
float distanceToVoxelCenter = sqrtf(powf(viewerPosition[0] - nodePosition[0] - halfUnitForVoxel, 2) +
powf(viewerPosition[1] - nodePosition[1] - halfUnitForVoxel, 2) +
powf(viewerPosition[2] - nodePosition[2] - halfUnitForVoxel, 2));
if (distanceToVoxelCenter < boundaryDistanceForRenderLevel(*currentNode->octalCode + 1)) {
for (int i = 0; i < 8; i++) {
// check if there is a child here
if (currentNode->children[i] != NULL) {
// calculate the child's position based on the parent position
float childNodePosition[3];
for (int j = 0; j < 3; j++) {
childNodePosition[j] = nodePosition[j];
if (oneAtBit(branchIndexWithDescendant(currentNode->octalCode,
currentNode->children[i]->octalCode),
(7 - j))) {
childNodePosition[j] -= (powf(0.5, *currentNode->children[i]->octalCode) * TREE_SCALE);
}
}
voxelsAdded += treeToArrays(currentNode->children[i], childNodePosition);
}
}
}
// if we didn't get any voxels added then we're a leaf
// add our vertex and color information to the interleaved array
if (voxelsAdded == 0 && currentNode->color[3] == 1) {
float * startVertex = firstVertexForCode(currentNode->octalCode);
float voxelScale = 1 / powf(2, *currentNode->octalCode);
// populate the array with points for the 8 vertices
// and RGB color for each added vertex
for (int j = 0; j < VERTEX_POINTS_PER_VOXEL; j++ ) {
*writeVerticesEndPointer = startVertex[j % 3] + (identityVertices[j] * voxelScale);
*(writeColorsArray + (writeVerticesEndPointer - writeVerticesArray)) = currentNode->color[j % 3];
writeVerticesEndPointer++;
}
voxelsAdded++;
delete [] startVertex;
}
return voxelsAdded;
}
VoxelSystem* VoxelSystem::clone() const {
// this still needs to be implemented, will need to be used if VoxelSystem is attached to agent
return NULL;
}
void VoxelSystem::init() {
// prep the data structures for incoming voxel data
writeVerticesEndPointer = writeVerticesArray = new GLfloat[VERTEX_POINTS_PER_VOXEL * MAX_VOXELS_PER_SYSTEM];
readVerticesEndPointer = readVerticesArray = new GLfloat[VERTEX_POINTS_PER_VOXEL * MAX_VOXELS_PER_SYSTEM];
writeColorsArray = new GLubyte[VERTEX_POINTS_PER_VOXEL * MAX_VOXELS_PER_SYSTEM];
readColorsArray = new GLubyte[VERTEX_POINTS_PER_VOXEL * MAX_VOXELS_PER_SYSTEM];
GLuint *indicesArray = new GLuint[INDICES_PER_VOXEL * MAX_VOXELS_PER_SYSTEM];
// populate the indicesArray
// this will not change given new voxels, so we can set it all up now
for (int n = 0; n < MAX_VOXELS_PER_SYSTEM; n++) {
// fill the indices array
int voxelIndexOffset = n * INDICES_PER_VOXEL;
GLuint *currentIndicesPos = indicesArray + voxelIndexOffset;
int startIndex = (n * VERTICES_PER_VOXEL);
for (int i = 0; i < INDICES_PER_VOXEL; i++) {
// add indices for this side of the cube
currentIndicesPos[i] = startIndex + identityIndices[i];
}
}
// VBO for the verticesArray
glGenBuffers(1, &vboVerticesID);
glBindBuffer(GL_ARRAY_BUFFER, vboVerticesID);
glBufferData(GL_ARRAY_BUFFER, VERTEX_POINTS_PER_VOXEL * sizeof(GLfloat) * MAX_VOXELS_PER_SYSTEM, NULL, GL_DYNAMIC_DRAW);
// VBO for colorsArray
glGenBuffers(1, &vboColorsID);
glBindBuffer(GL_ARRAY_BUFFER, vboColorsID);
glBufferData(GL_ARRAY_BUFFER, VERTEX_POINTS_PER_VOXEL * sizeof(GLubyte) * MAX_VOXELS_PER_SYSTEM, NULL, GL_DYNAMIC_DRAW);
// VBO for the indicesArray
glGenBuffers(1, &vboIndicesID);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vboIndicesID);
glBufferData(GL_ELEMENT_ARRAY_BUFFER,
INDICES_PER_VOXEL * sizeof(GLuint) * MAX_VOXELS_PER_SYSTEM,
indicesArray, GL_STATIC_DRAW);
// delete the indices array that is no longer needed
delete[] indicesArray;
}
void VoxelSystem::render() {
glPushMatrix();
if (readVerticesEndPointer != readVerticesArray) {
// try to lock on the buffer write
// just avoid pulling new data if it is currently being written
if (pthread_mutex_trylock(&bufferWriteLock) == 0) {
glBindBuffer(GL_ARRAY_BUFFER, vboVerticesID);
glBufferData(GL_ARRAY_BUFFER, VERTEX_POINTS_PER_VOXEL * sizeof(GLfloat) * MAX_VOXELS_PER_SYSTEM, NULL, GL_DYNAMIC_DRAW);
glBufferSubData(GL_ARRAY_BUFFER, 0, (readVerticesEndPointer - readVerticesArray) * sizeof(GLfloat), readVerticesArray);
glBindBuffer(GL_ARRAY_BUFFER, vboColorsID);
glBufferData(GL_ARRAY_BUFFER, VERTEX_POINTS_PER_VOXEL * sizeof(GLubyte) * MAX_VOXELS_PER_SYSTEM, NULL, GL_DYNAMIC_DRAW);
glBufferSubData(GL_ARRAY_BUFFER, 0, (readVerticesEndPointer - readVerticesArray) * sizeof(GLubyte), readColorsArray);
readVerticesEndPointer = readVerticesArray;
pthread_mutex_unlock(&bufferWriteLock);
}
}
// tell OpenGL where to find vertex and color information
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_COLOR_ARRAY);
glBindBuffer(GL_ARRAY_BUFFER, vboVerticesID);
glVertexPointer(3, GL_FLOAT, 0, 0);
glBindBuffer(GL_ARRAY_BUFFER, vboColorsID);
glColorPointer(3, GL_UNSIGNED_BYTE, 0, 0);
// draw the number of voxels we have
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vboIndicesID);
glScalef(10, 10, 10);
glDrawElements(GL_TRIANGLES, 36 * voxelsRendered, GL_UNSIGNED_INT, 0);
// deactivate vertex and color arrays after drawing
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_COLOR_ARRAY);
// bind with 0 to switch back to normal operation
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
// scale back down to 1 so heads aren't massive
glPopMatrix();
}
void VoxelSystem::simulate(float deltaTime) {
}