// // Cube.cpp // interface // // Created by Philip on 12/31/12. // Copyright (c) 2012 High Fidelity, Inc. All rights reserved. // #include #include #include // to load voxels from file #include // to load voxels from file #include #include #include "VoxelSystem.h" const int MAX_VOXELS_PER_SYSTEM = 1500000; //250000; const int VERTICES_PER_VOXEL = 8; const int VERTEX_POINTS_PER_VOXEL = 3 * VERTICES_PER_VOXEL; const int INDICES_PER_VOXEL = 3 * 12; float identityVertices[] = { 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1 }; GLubyte identityIndices[] = { 0,1,2, 0,2,3, 0,1,5, 0,4,5, 0,3,7, 0,4,7, 1,2,6, 1,5,6, 2,3,7, 2,6,7, 4,5,6, 4,6,7 }; VoxelSystem::VoxelSystem() { voxelsRendered = 0; tree = new VoxelTree(); pthread_mutex_init(&bufferWriteLock, NULL); } VoxelSystem::~VoxelSystem() { delete[] readVerticesArray; delete[] writeVerticesArray; delete[] readColorsArray; delete[] writeColorsArray; delete tree; pthread_mutex_destroy(&bufferWriteLock); } void VoxelSystem::setViewerHead(Head *newViewerHead) { viewerHead = newViewerHead; } ////////////////////////////////////////////////////////////////////////////////////////// // Method: VoxelSystem::loadVoxelsFile() // Description: Loads HiFidelity encoded Voxels from a binary file. The current file // format is a stream of single voxels with NO color data. Currently // colors are set randomly // Complaints: Brad :) // To Do: Need to add color data to the file. void VoxelSystem::loadVoxelsFile(const char* fileName, bool wantColorRandomizer) { tree->loadVoxelsFile(fileName,wantColorRandomizer); copyWrittenDataToReadArrays(); } ////////////////////////////////////////////////////////////////////////////////////////// // Method: VoxelSystem::createSphere() // Description: Creates a sphere of voxels in the local system at a given location/radius // To Do: Move this function someplace better? I put it here because we need a // mechanism to tell the system to redraw it's arrays after voxels are done // being added. This is a concept mostly only understood by VoxelSystem. // Complaints: Brad :) void VoxelSystem::createSphere(float r,float xc, float yc, float zc, float s, bool solid, bool wantColorRandomizer) { tree->createSphere(r,xc,yc,zc,s,solid,wantColorRandomizer); setupNewVoxelsForDrawing(); } void VoxelSystem::parseData(void *data, int size) { // output the bits received from the voxel server unsigned char *voxelData = (unsigned char *) data + 1; // ask the VoxelTree to read the bitstream into the tree tree->readBitstreamToTree(voxelData, size - 1); setupNewVoxelsForDrawing(); } void VoxelSystem::setupNewVoxelsForDrawing() { // reset the verticesEndPointer so we're writing to the beginning of the array writeVerticesEndPointer = writeVerticesArray; // call recursive function to populate in memory arrays // it will return the number of voxels added float treeRoot[3] = {0,0,0}; voxelsRendered = treeToArrays(tree->rootNode, treeRoot); // copy the newly written data to the arrays designated for reading copyWrittenDataToReadArrays(); } void VoxelSystem::copyWrittenDataToReadArrays() { // lock on the buffer write lock so we can't modify the data when the GPU is reading it pthread_mutex_lock(&bufferWriteLock); // store a pointer to the current end so it doesn't change during copy GLfloat *endOfCurrentVerticesData = writeVerticesEndPointer; // copy the vertices and colors memcpy(readVerticesArray, writeVerticesArray, (endOfCurrentVerticesData - writeVerticesArray) * sizeof(GLfloat)); memcpy(readColorsArray, writeColorsArray, (endOfCurrentVerticesData - writeVerticesArray) * sizeof(GLubyte)); // set the read vertices end pointer to the correct spot so the GPU knows how much to pull readVerticesEndPointer = readVerticesArray + (endOfCurrentVerticesData - writeVerticesArray); pthread_mutex_unlock(&bufferWriteLock); } int VoxelSystem::treeToArrays(VoxelNode *currentNode, float nodePosition[3]) { int voxelsAdded = 0; float halfUnitForVoxel = powf(0.5, *currentNode->octalCode) * (0.5 * TREE_SCALE); glm::vec3 viewerPosition = viewerHead->getPos(); float distanceToVoxelCenter = sqrtf(powf(viewerPosition[0] - nodePosition[0] - halfUnitForVoxel, 2) + powf(viewerPosition[1] - nodePosition[1] - halfUnitForVoxel, 2) + powf(viewerPosition[2] - nodePosition[2] - halfUnitForVoxel, 2)); if (distanceToVoxelCenter < boundaryDistanceForRenderLevel(*currentNode->octalCode + 1)) { for (int i = 0; i < 8; i++) { // check if there is a child here if (currentNode->children[i] != NULL) { // calculate the child's position based on the parent position float childNodePosition[3]; for (int j = 0; j < 3; j++) { childNodePosition[j] = nodePosition[j]; if (oneAtBit(branchIndexWithDescendant(currentNode->octalCode, currentNode->children[i]->octalCode), (7 - j))) { childNodePosition[j] -= (powf(0.5, *currentNode->children[i]->octalCode) * TREE_SCALE); } } voxelsAdded += treeToArrays(currentNode->children[i], childNodePosition); } } } // if we didn't get any voxels added then we're a leaf // add our vertex and color information to the interleaved array if (voxelsAdded == 0 && currentNode->color[3] == 1) { float * startVertex = firstVertexForCode(currentNode->octalCode); float voxelScale = 1 / powf(2, *currentNode->octalCode); // populate the array with points for the 8 vertices // and RGB color for each added vertex for (int j = 0; j < VERTEX_POINTS_PER_VOXEL; j++ ) { *writeVerticesEndPointer = startVertex[j % 3] + (identityVertices[j] * voxelScale); *(writeColorsArray + (writeVerticesEndPointer - writeVerticesArray)) = currentNode->color[j % 3]; writeVerticesEndPointer++; } voxelsAdded++; delete [] startVertex; } return voxelsAdded; } VoxelSystem* VoxelSystem::clone() const { // this still needs to be implemented, will need to be used if VoxelSystem is attached to agent return NULL; } void VoxelSystem::init() { // prep the data structures for incoming voxel data writeVerticesEndPointer = writeVerticesArray = new GLfloat[VERTEX_POINTS_PER_VOXEL * MAX_VOXELS_PER_SYSTEM]; readVerticesEndPointer = readVerticesArray = new GLfloat[VERTEX_POINTS_PER_VOXEL * MAX_VOXELS_PER_SYSTEM]; writeColorsArray = new GLubyte[VERTEX_POINTS_PER_VOXEL * MAX_VOXELS_PER_SYSTEM]; readColorsArray = new GLubyte[VERTEX_POINTS_PER_VOXEL * MAX_VOXELS_PER_SYSTEM]; GLuint *indicesArray = new GLuint[INDICES_PER_VOXEL * MAX_VOXELS_PER_SYSTEM]; // populate the indicesArray // this will not change given new voxels, so we can set it all up now for (int n = 0; n < MAX_VOXELS_PER_SYSTEM; n++) { // fill the indices array int voxelIndexOffset = n * INDICES_PER_VOXEL; GLuint *currentIndicesPos = indicesArray + voxelIndexOffset; int startIndex = (n * VERTICES_PER_VOXEL); for (int i = 0; i < INDICES_PER_VOXEL; i++) { // add indices for this side of the cube currentIndicesPos[i] = startIndex + identityIndices[i]; } } // VBO for the verticesArray glGenBuffers(1, &vboVerticesID); glBindBuffer(GL_ARRAY_BUFFER, vboVerticesID); glBufferData(GL_ARRAY_BUFFER, VERTEX_POINTS_PER_VOXEL * sizeof(GLfloat) * MAX_VOXELS_PER_SYSTEM, NULL, GL_DYNAMIC_DRAW); // VBO for colorsArray glGenBuffers(1, &vboColorsID); glBindBuffer(GL_ARRAY_BUFFER, vboColorsID); glBufferData(GL_ARRAY_BUFFER, VERTEX_POINTS_PER_VOXEL * sizeof(GLubyte) * MAX_VOXELS_PER_SYSTEM, NULL, GL_DYNAMIC_DRAW); // VBO for the indicesArray glGenBuffers(1, &vboIndicesID); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vboIndicesID); glBufferData(GL_ELEMENT_ARRAY_BUFFER, INDICES_PER_VOXEL * sizeof(GLuint) * MAX_VOXELS_PER_SYSTEM, indicesArray, GL_STATIC_DRAW); // delete the indices array that is no longer needed delete[] indicesArray; } void VoxelSystem::render() { glPushMatrix(); if (readVerticesEndPointer != readVerticesArray) { // try to lock on the buffer write // just avoid pulling new data if it is currently being written if (pthread_mutex_trylock(&bufferWriteLock) == 0) { glBindBuffer(GL_ARRAY_BUFFER, vboVerticesID); glBufferData(GL_ARRAY_BUFFER, VERTEX_POINTS_PER_VOXEL * sizeof(GLfloat) * MAX_VOXELS_PER_SYSTEM, NULL, GL_DYNAMIC_DRAW); glBufferSubData(GL_ARRAY_BUFFER, 0, (readVerticesEndPointer - readVerticesArray) * sizeof(GLfloat), readVerticesArray); glBindBuffer(GL_ARRAY_BUFFER, vboColorsID); glBufferData(GL_ARRAY_BUFFER, VERTEX_POINTS_PER_VOXEL * sizeof(GLubyte) * MAX_VOXELS_PER_SYSTEM, NULL, GL_DYNAMIC_DRAW); glBufferSubData(GL_ARRAY_BUFFER, 0, (readVerticesEndPointer - readVerticesArray) * sizeof(GLubyte), readColorsArray); readVerticesEndPointer = readVerticesArray; pthread_mutex_unlock(&bufferWriteLock); } } // tell OpenGL where to find vertex and color information glEnableClientState(GL_VERTEX_ARRAY); glEnableClientState(GL_COLOR_ARRAY); glBindBuffer(GL_ARRAY_BUFFER, vboVerticesID); glVertexPointer(3, GL_FLOAT, 0, 0); glBindBuffer(GL_ARRAY_BUFFER, vboColorsID); glColorPointer(3, GL_UNSIGNED_BYTE, 0, 0); // draw the number of voxels we have glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vboIndicesID); glScalef(10, 10, 10); glDrawElements(GL_TRIANGLES, 36 * voxelsRendered, GL_UNSIGNED_INT, 0); // deactivate vertex and color arrays after drawing glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_COLOR_ARRAY); // bind with 0 to switch back to normal operation glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); // scale back down to 1 so heads aren't massive glPopMatrix(); } void VoxelSystem::simulate(float deltaTime) { }