overte/libraries/audio/src/AudioRingBuffer.cpp

218 lines
7.8 KiB
C++

//
// AudioRingBuffer.cpp
// libraries/audio/src
//
// Created by Stephen Birarda on 2/1/13.
// Copyright 2013 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include <cstring>
#include <functional>
#include <math.h>
#include <QtCore/QDebug>
#include "PacketHeaders.h"
#include "AudioRingBuffer.h"
AudioRingBuffer::AudioRingBuffer(int numFrameSamples, bool randomAccessMode) :
NodeData(),
_resetCount(0),
_sampleCapacity(numFrameSamples * RING_BUFFER_LENGTH_FRAMES),
_numFrameSamples(numFrameSamples),
_isStarved(true),
_hasStarted(false),
_randomAccessMode(randomAccessMode)
{
_arrayLength = _sampleCapacity;// +1;
if (numFrameSamples) {
_buffer = new int16_t[_arrayLength];
if (_randomAccessMode) {
memset(_buffer, 0, _arrayLength * sizeof(int16_t));
}
_nextOutput = _buffer;
_endOfLastWrite = _buffer;
} else {
_buffer = NULL;
_nextOutput = NULL;
_endOfLastWrite = NULL;
}
};
AudioRingBuffer::~AudioRingBuffer() {
delete[] _buffer;
}
void AudioRingBuffer::reset() {
_endOfLastWrite = _buffer;
_nextOutput = _buffer;
_isStarved = true;
}
void AudioRingBuffer::resizeForFrameSize(qint64 numFrameSamples) {
delete[] _buffer;
_sampleCapacity = numFrameSamples * RING_BUFFER_LENGTH_FRAMES;
_arrayLength = _sampleCapacity + 1;
_buffer = new int16_t[_arrayLength];
if (_randomAccessMode) {
memset(_buffer, 0, _arrayLength * sizeof(int16_t));
}
_nextOutput = _buffer;
_endOfLastWrite = _buffer;
}
int AudioRingBuffer::parseData(const QByteArray& packet) {
int numBytesBeforeAudioData = numBytesForPacketHeader(packet);
return writeData(packet.data() + numBytesBeforeAudioData, packet.size() - numBytesBeforeAudioData);
}
qint64 AudioRingBuffer::readSamples(int16_t* destination, qint64 maxSamples) {
return readData((char*) destination, maxSamples * sizeof(int16_t));
}
qint64 AudioRingBuffer::readData(char *data, qint64 maxSize) {
// only copy up to the number of samples we have available
int numReadSamples = std::min((unsigned) (maxSize / sizeof(int16_t)), samplesAvailable());
// If we're in random access mode, then we consider our number of available read samples slightly
// differently. Namely, if anything has been written, we say we have as many samples as they ask for
// otherwise we say we have nothing available
if (_randomAccessMode) {
numReadSamples = _endOfLastWrite ? (maxSize / sizeof(int16_t)) : 0;
}
if (_nextOutput + numReadSamples > _buffer + _arrayLength) {
// we're going to need to do two reads to get this data, it wraps around the edge
// read to the end of the buffer
int numSamplesToEnd = (_buffer + _arrayLength) - _nextOutput;
memcpy(data, _nextOutput, numSamplesToEnd * sizeof(int16_t));
if (_randomAccessMode) {
memset(_nextOutput, 0, numSamplesToEnd * sizeof(int16_t)); // clear it
}
// read the rest from the beginning of the buffer
memcpy(data + (numSamplesToEnd * sizeof(int16_t)), _buffer, (numReadSamples - numSamplesToEnd) * sizeof(int16_t));
if (_randomAccessMode) {
memset(_buffer, 0, (numReadSamples - numSamplesToEnd) * sizeof(int16_t)); // clear it
}
} else {
// read the data
memcpy(data, _nextOutput, numReadSamples * sizeof(int16_t));
if (_randomAccessMode) {
memset(_nextOutput, 0, numReadSamples * sizeof(int16_t)); // clear it
}
}
// push the position of _nextOutput by the number of samples read
_nextOutput = shiftedPositionAccomodatingWrap(_nextOutput, numReadSamples);
return numReadSamples * sizeof(int16_t);
}
qint64 AudioRingBuffer::writeSamples(const int16_t* source, qint64 maxSamples) {
return writeData((const char*) source, maxSamples * sizeof(int16_t));
}
qint64 AudioRingBuffer::writeData(const char* data, qint64 maxSize) {
// make sure we have enough bytes left for this to be the right amount of audio
// otherwise we should not copy that data, and leave the buffer pointers where they are
int samplesToCopy = std::min((quint64)(maxSize / sizeof(int16_t)), (quint64)_sampleCapacity);
int samplesRoomFor = _sampleCapacity - samplesAvailable();
if (samplesToCopy > samplesRoomFor) {
// there's not enough room for this write. erase old data to make room for this new data
int samplesToDelete = samplesToCopy - samplesRoomFor;
_nextOutput = shiftedPositionAccomodatingWrap(_nextOutput, samplesToDelete);
qDebug() << "Overflowed ring buffer! Overwriting old data";
}
if (_endOfLastWrite + samplesToCopy <= _buffer + _arrayLength) {
memcpy(_endOfLastWrite, data, samplesToCopy * sizeof(int16_t));
} else {
int numSamplesToEnd = (_buffer + _arrayLength) - _endOfLastWrite;
memcpy(_endOfLastWrite, data, numSamplesToEnd * sizeof(int16_t));
memcpy(_buffer, data + (numSamplesToEnd * sizeof(int16_t)), (samplesToCopy - numSamplesToEnd) * sizeof(int16_t));
}
_endOfLastWrite = shiftedPositionAccomodatingWrap(_endOfLastWrite, samplesToCopy);
return samplesToCopy * sizeof(int16_t);
}
int16_t& AudioRingBuffer::operator[](const int index) {
return *shiftedPositionAccomodatingWrap(_nextOutput, index);
}
const int16_t& AudioRingBuffer::operator[] (const int index) const {
return *shiftedPositionAccomodatingWrap(_nextOutput, index);
}
void AudioRingBuffer::shiftReadPosition(unsigned int numSamples) {
_nextOutput = shiftedPositionAccomodatingWrap(_nextOutput, numSamples);
}
unsigned int AudioRingBuffer::samplesAvailable() const {
if (!_endOfLastWrite) {
return 0;
} else {
int sampleDifference = _endOfLastWrite - _nextOutput;
if (sampleDifference < 0) {
sampleDifference += _arrayLength;
}
return sampleDifference;
}
}
int AudioRingBuffer::addSilentFrame(int numSilentSamples) {
int samplesRoomFor = _sampleCapacity - samplesAvailable();
if (numSilentSamples > samplesRoomFor) {
// there's not enough room for this write. write as many silent samples as we have room for
numSilentSamples = samplesRoomFor;
qDebug() << "Dropping some silent samples to prevent ring buffer overflow";
}
// memset zeroes into the buffer, accomodate a wrap around the end
// push the _endOfLastWrite to the correct spot
if (_endOfLastWrite + numSilentSamples <= _buffer + _arrayLength) {
memset(_endOfLastWrite, 0, numSilentSamples * sizeof(int16_t));
} else {
int numSamplesToEnd = (_buffer + _arrayLength) - _endOfLastWrite;
memset(_endOfLastWrite, 0, numSamplesToEnd * sizeof(int16_t));
memset(_buffer, 0, (numSilentSamples - numSamplesToEnd) * sizeof(int16_t));
}
_endOfLastWrite = shiftedPositionAccomodatingWrap(_endOfLastWrite, numSilentSamples);
return numSilentSamples * sizeof(int16_t);
}
bool AudioRingBuffer::isNotStarvedOrHasMinimumSamples(unsigned int numRequiredSamples) const {
if (!_isStarved) {
return true;
} else {
return samplesAvailable() >= numRequiredSamples;
}
}
int16_t* AudioRingBuffer::shiftedPositionAccomodatingWrap(int16_t* position, int numSamplesShift) const {
if (numSamplesShift > 0 && position + numSamplesShift >= _buffer + _arrayLength) {
// this shift will wrap the position around to the beginning of the ring
return position + numSamplesShift - _arrayLength;
} else if (numSamplesShift < 0 && position + numSamplesShift < _buffer) {
// this shift will go around to the end of the ring
return position + numSamplesShift + _arrayLength;
} else {
return position + numSamplesShift;
}
}