// // AudioRingBuffer.cpp // libraries/audio/src // // Created by Stephen Birarda on 2/1/13. // Copyright 2013 High Fidelity, Inc. // // Distributed under the Apache License, Version 2.0. // See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html // #include #include #include #include #include "PacketHeaders.h" #include "AudioRingBuffer.h" AudioRingBuffer::AudioRingBuffer(int numFrameSamples, bool randomAccessMode) : NodeData(), _resetCount(0), _sampleCapacity(numFrameSamples * RING_BUFFER_LENGTH_FRAMES), _numFrameSamples(numFrameSamples), _isStarved(true), _hasStarted(false), _randomAccessMode(randomAccessMode) { _arrayLength = _sampleCapacity;// +1; if (numFrameSamples) { _buffer = new int16_t[_arrayLength]; if (_randomAccessMode) { memset(_buffer, 0, _arrayLength * sizeof(int16_t)); } _nextOutput = _buffer; _endOfLastWrite = _buffer; } else { _buffer = NULL; _nextOutput = NULL; _endOfLastWrite = NULL; } }; AudioRingBuffer::~AudioRingBuffer() { delete[] _buffer; } void AudioRingBuffer::reset() { _endOfLastWrite = _buffer; _nextOutput = _buffer; _isStarved = true; } void AudioRingBuffer::resizeForFrameSize(qint64 numFrameSamples) { delete[] _buffer; _sampleCapacity = numFrameSamples * RING_BUFFER_LENGTH_FRAMES; _arrayLength = _sampleCapacity + 1; _buffer = new int16_t[_arrayLength]; if (_randomAccessMode) { memset(_buffer, 0, _arrayLength * sizeof(int16_t)); } _nextOutput = _buffer; _endOfLastWrite = _buffer; } int AudioRingBuffer::parseData(const QByteArray& packet) { int numBytesBeforeAudioData = numBytesForPacketHeader(packet); return writeData(packet.data() + numBytesBeforeAudioData, packet.size() - numBytesBeforeAudioData); } qint64 AudioRingBuffer::readSamples(int16_t* destination, qint64 maxSamples) { return readData((char*) destination, maxSamples * sizeof(int16_t)); } qint64 AudioRingBuffer::readData(char *data, qint64 maxSize) { // only copy up to the number of samples we have available int numReadSamples = std::min((unsigned) (maxSize / sizeof(int16_t)), samplesAvailable()); // If we're in random access mode, then we consider our number of available read samples slightly // differently. Namely, if anything has been written, we say we have as many samples as they ask for // otherwise we say we have nothing available if (_randomAccessMode) { numReadSamples = _endOfLastWrite ? (maxSize / sizeof(int16_t)) : 0; } if (_nextOutput + numReadSamples > _buffer + _arrayLength) { // we're going to need to do two reads to get this data, it wraps around the edge // read to the end of the buffer int numSamplesToEnd = (_buffer + _arrayLength) - _nextOutput; memcpy(data, _nextOutput, numSamplesToEnd * sizeof(int16_t)); if (_randomAccessMode) { memset(_nextOutput, 0, numSamplesToEnd * sizeof(int16_t)); // clear it } // read the rest from the beginning of the buffer memcpy(data + (numSamplesToEnd * sizeof(int16_t)), _buffer, (numReadSamples - numSamplesToEnd) * sizeof(int16_t)); if (_randomAccessMode) { memset(_buffer, 0, (numReadSamples - numSamplesToEnd) * sizeof(int16_t)); // clear it } } else { // read the data memcpy(data, _nextOutput, numReadSamples * sizeof(int16_t)); if (_randomAccessMode) { memset(_nextOutput, 0, numReadSamples * sizeof(int16_t)); // clear it } } // push the position of _nextOutput by the number of samples read _nextOutput = shiftedPositionAccomodatingWrap(_nextOutput, numReadSamples); return numReadSamples * sizeof(int16_t); } qint64 AudioRingBuffer::writeSamples(const int16_t* source, qint64 maxSamples) { return writeData((const char*) source, maxSamples * sizeof(int16_t)); } qint64 AudioRingBuffer::writeData(const char* data, qint64 maxSize) { // make sure we have enough bytes left for this to be the right amount of audio // otherwise we should not copy that data, and leave the buffer pointers where they are int samplesToCopy = std::min((quint64)(maxSize / sizeof(int16_t)), (quint64)_sampleCapacity); int samplesRoomFor = _sampleCapacity - samplesAvailable(); if (samplesToCopy > samplesRoomFor) { // there's not enough room for this write. erase old data to make room for this new data int samplesToDelete = samplesToCopy - samplesRoomFor; _nextOutput = shiftedPositionAccomodatingWrap(_nextOutput, samplesToDelete); qDebug() << "Overflowed ring buffer! Overwriting old data"; } if (_endOfLastWrite + samplesToCopy <= _buffer + _arrayLength) { memcpy(_endOfLastWrite, data, samplesToCopy * sizeof(int16_t)); } else { int numSamplesToEnd = (_buffer + _arrayLength) - _endOfLastWrite; memcpy(_endOfLastWrite, data, numSamplesToEnd * sizeof(int16_t)); memcpy(_buffer, data + (numSamplesToEnd * sizeof(int16_t)), (samplesToCopy - numSamplesToEnd) * sizeof(int16_t)); } _endOfLastWrite = shiftedPositionAccomodatingWrap(_endOfLastWrite, samplesToCopy); return samplesToCopy * sizeof(int16_t); } int16_t& AudioRingBuffer::operator[](const int index) { return *shiftedPositionAccomodatingWrap(_nextOutput, index); } const int16_t& AudioRingBuffer::operator[] (const int index) const { return *shiftedPositionAccomodatingWrap(_nextOutput, index); } void AudioRingBuffer::shiftReadPosition(unsigned int numSamples) { _nextOutput = shiftedPositionAccomodatingWrap(_nextOutput, numSamples); } unsigned int AudioRingBuffer::samplesAvailable() const { if (!_endOfLastWrite) { return 0; } else { int sampleDifference = _endOfLastWrite - _nextOutput; if (sampleDifference < 0) { sampleDifference += _arrayLength; } return sampleDifference; } } int AudioRingBuffer::addSilentFrame(int numSilentSamples) { int samplesRoomFor = _sampleCapacity - samplesAvailable(); if (numSilentSamples > samplesRoomFor) { // there's not enough room for this write. write as many silent samples as we have room for numSilentSamples = samplesRoomFor; qDebug() << "Dropping some silent samples to prevent ring buffer overflow"; } // memset zeroes into the buffer, accomodate a wrap around the end // push the _endOfLastWrite to the correct spot if (_endOfLastWrite + numSilentSamples <= _buffer + _arrayLength) { memset(_endOfLastWrite, 0, numSilentSamples * sizeof(int16_t)); } else { int numSamplesToEnd = (_buffer + _arrayLength) - _endOfLastWrite; memset(_endOfLastWrite, 0, numSamplesToEnd * sizeof(int16_t)); memset(_buffer, 0, (numSilentSamples - numSamplesToEnd) * sizeof(int16_t)); } _endOfLastWrite = shiftedPositionAccomodatingWrap(_endOfLastWrite, numSilentSamples); return numSilentSamples * sizeof(int16_t); } bool AudioRingBuffer::isNotStarvedOrHasMinimumSamples(unsigned int numRequiredSamples) const { if (!_isStarved) { return true; } else { return samplesAvailable() >= numRequiredSamples; } } int16_t* AudioRingBuffer::shiftedPositionAccomodatingWrap(int16_t* position, int numSamplesShift) const { if (numSamplesShift > 0 && position + numSamplesShift >= _buffer + _arrayLength) { // this shift will wrap the position around to the beginning of the ring return position + numSamplesShift - _arrayLength; } else if (numSamplesShift < 0 && position + numSamplesShift < _buffer) { // this shift will go around to the end of the ring return position + numSamplesShift + _arrayLength; } else { return position + numSamplesShift; } }