overte/tests/physics/src/ShapeColliderTests.cpp
2014-03-04 09:56:06 -08:00

706 lines
27 KiB
C++

//
// ShapeColliderTests.cpp
// physics-tests
//
// Created by Andrew Meadows on 2014.02.21
// Copyright (c) 2014 High Fidelity, Inc. All rights reserved.
//
//#include <stdio.h>
#include <iostream>
#include <glm/glm.hpp>
#include <glm/gtx/quaternion.hpp>
#include <CollisionInfo.h>
#include <ShapeCollider.h>
#include <SharedUtil.h>
#include <SphereShape.h>
#include "PhysicsTestUtil.h"
#include "ShapeColliderTests.h"
const glm::vec3 origin(0.f);
void ShapeColliderTests::sphereMissesSphere() {
// non-overlapping spheres of unequal size
float radiusA = 7.f;
float radiusB = 3.f;
float alpha = 1.2f;
float beta = 1.3f;
glm::vec3 offsetDirection = glm::normalize(glm::vec3(1.f, 2.f, 3.f));
float offsetDistance = alpha * radiusA + beta * radiusB;
SphereShape sphereA(radiusA, origin);
SphereShape sphereB(radiusB, offsetDistance * offsetDirection);
CollisionList collisions(16);
// collide A to B...
{
bool touching = ShapeCollider::shapeShape(&sphereA, &sphereB, collisions);
if (touching) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: sphereA and sphereB should NOT touch" << std::endl;
}
}
// collide B to A...
{
bool touching = ShapeCollider::shapeShape(&sphereB, &sphereA, collisions);
if (touching) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: sphereA and sphereB should NOT touch" << std::endl;
}
}
// also test shapeShape
{
bool touching = ShapeCollider::shapeShape(&sphereB, &sphereA, collisions);
if (touching) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: sphereA and sphereB should NOT touch" << std::endl;
}
}
if (collisions.size() > 0) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: expected empty collision list but size is " << collisions.size()
<< std::endl;
}
}
void ShapeColliderTests::sphereTouchesSphere() {
// overlapping spheres of unequal size
float radiusA = 7.f;
float radiusB = 3.f;
float alpha = 0.2f;
float beta = 0.3f;
glm::vec3 offsetDirection = glm::normalize(glm::vec3(1.f, 2.f, 3.f));
float offsetDistance = alpha * radiusA + beta * radiusB;
float expectedPenetrationDistance = (1.f - alpha) * radiusA + (1.f - beta) * radiusB;
glm::vec3 expectedPenetration = expectedPenetrationDistance * offsetDirection;
SphereShape sphereA(radiusA, origin);
SphereShape sphereB(radiusB, offsetDistance * offsetDirection);
CollisionList collisions(16);
int numCollisions = 0;
// collide A to B...
{
bool touching = ShapeCollider::shapeShape(&sphereA, &sphereB, collisions);
if (!touching) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: sphereA and sphereB should touch" << std::endl;
} else {
++numCollisions;
}
// verify state of collisions
if (numCollisions != collisions.size()) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: expected collisions size of " << numCollisions << " but actual size is " << collisions.size()
<< std::endl;
}
CollisionInfo* collision = collisions.getCollision(numCollisions - 1);
if (!collision) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: null collision" << std::endl;
}
// penetration points from sphereA into sphereB
float inaccuracy = glm::length(collision->_penetration - expectedPenetration);
if (fabs(inaccuracy) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: bad penetration: expected = " << expectedPenetration
<< " actual = " << collision->_penetration
<< std::endl;
}
// contactPoint is on surface of sphereA
glm::vec3 AtoB = sphereB.getPosition() - sphereA.getPosition();
glm::vec3 expectedContactPoint = sphereA.getPosition() + radiusA * glm::normalize(AtoB);
inaccuracy = glm::length(collision->_contactPoint - expectedContactPoint);
if (fabs(inaccuracy) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: bad contactPoint: expected = " << expectedContactPoint
<< " actual = " << collision->_contactPoint
<< std::endl;
}
}
// collide B to A...
{
bool touching = ShapeCollider::shapeShape(&sphereB, &sphereA, collisions);
if (!touching) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: sphereA and sphereB should touch" << std::endl;
} else {
++numCollisions;
}
// penetration points from sphereA into sphereB
CollisionInfo* collision = collisions.getCollision(numCollisions - 1);
float inaccuracy = glm::length(collision->_penetration + expectedPenetration);
if (fabs(inaccuracy) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: bad penetration: expected = " << expectedPenetration
<< " actual = " << collision->_penetration
<< std::endl;
}
// contactPoint is on surface of sphereA
glm::vec3 BtoA = sphereA.getPosition() - sphereB.getPosition();
glm::vec3 expectedContactPoint = sphereB.getPosition() + radiusB * glm::normalize(BtoA);
inaccuracy = glm::length(collision->_contactPoint - expectedContactPoint);
if (fabs(inaccuracy) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: bad contactPoint: expected = " << expectedContactPoint
<< " actual = " << collision->_contactPoint
<< std::endl;
}
}
}
void ShapeColliderTests::sphereMissesCapsule() {
// non-overlapping sphere and capsule
float radiusA = 1.5f;
float radiusB = 2.3f;
float totalRadius = radiusA + radiusB;
float halfHeightB = 1.7f;
float axialOffset = totalRadius + 1.1f * halfHeightB;
float radialOffset = 1.2f * radiusA + 1.3f * radiusB;
SphereShape sphereA(radiusA);
CapsuleShape capsuleB(radiusB, halfHeightB);
// give the capsule some arbirary transform
float angle = 37.8;
glm::vec3 axis = glm::normalize( glm::vec3(-7.f, 2.8f, 9.3f) );
glm::quat rotation = glm::angleAxis(angle, axis);
glm::vec3 translation(15.1f, -27.1f, -38.6f);
capsuleB.setRotation(rotation);
capsuleB.setPosition(translation);
CollisionList collisions(16);
// walk sphereA along the local yAxis next to, but not touching, capsuleB
glm::vec3 localStartPosition(radialOffset, axialOffset, 0.f);
int numberOfSteps = 10;
float delta = 1.3f * (totalRadius + halfHeightB) / (numberOfSteps - 1);
for (int i = 0; i < numberOfSteps; ++i) {
// translate sphereA into world-frame
glm::vec3 localPosition = localStartPosition + (float(i) * delta) * yAxis;
sphereA.setPosition(rotation * localPosition + translation);
// sphereA agains capsuleB
if (ShapeCollider::shapeShape(&sphereA, &capsuleB, collisions))
{
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: sphere and capsule should NOT touch"
<< std::endl;
}
// capsuleB against sphereA
if (ShapeCollider::shapeShape(&capsuleB, &sphereA, collisions))
{
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: sphere and capsule should NOT touch"
<< std::endl;
}
}
if (collisions.size() > 0) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: expected empty collision list but size is " << collisions.size()
<< std::endl;
}
}
void ShapeColliderTests::sphereTouchesCapsule() {
// overlapping sphere and capsule
float radiusA = 2.f;
float radiusB = 1.f;
float totalRadius = radiusA + radiusB;
float halfHeightB = 2.f;
float alpha = 0.5f;
float beta = 0.5f;
float radialOffset = alpha * radiusA + beta * radiusB;
SphereShape sphereA(radiusA);
CapsuleShape capsuleB(radiusB, halfHeightB);
CollisionList collisions(16);
int numCollisions = 0;
{ // sphereA collides with capsuleB's cylindrical wall
sphereA.setPosition(radialOffset * xAxis);
if (!ShapeCollider::shapeShape(&sphereA, &capsuleB, collisions))
{
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: sphere and capsule should touch"
<< std::endl;
} else {
++numCollisions;
}
// penetration points from sphereA into capsuleB
CollisionInfo* collision = collisions.getCollision(numCollisions - 1);
glm::vec3 expectedPenetration = (radialOffset - totalRadius) * xAxis;
float inaccuracy = glm::length(collision->_penetration - expectedPenetration);
if (fabs(inaccuracy) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: bad penetration: expected = " << expectedPenetration
<< " actual = " << collision->_penetration
<< std::endl;
}
// contactPoint is on surface of sphereA
glm::vec3 expectedContactPoint = sphereA.getPosition() - radiusA * xAxis;
inaccuracy = glm::length(collision->_contactPoint - expectedContactPoint);
if (fabs(inaccuracy) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: bad contactPoint: expected = " << expectedContactPoint
<< " actual = " << collision->_contactPoint
<< std::endl;
}
// capsuleB collides with sphereA
if (!ShapeCollider::shapeShape(&capsuleB, &sphereA, collisions))
{
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: capsule and sphere should touch"
<< std::endl;
} else {
++numCollisions;
}
// penetration points from sphereA into capsuleB
collision = collisions.getCollision(numCollisions - 1);
expectedPenetration = - (radialOffset - totalRadius) * xAxis;
inaccuracy = glm::length(collision->_penetration - expectedPenetration);
if (fabs(inaccuracy) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: bad penetration: expected = " << expectedPenetration
<< " actual = " << collision->_penetration
<< std::endl;
}
// contactPoint is on surface of capsuleB
glm::vec3 BtoA = sphereA.getPosition() - capsuleB.getPosition();
glm::vec3 closestApproach = capsuleB.getPosition() + glm::dot(BtoA, yAxis) * yAxis;
expectedContactPoint = closestApproach + radiusB * glm::normalize(BtoA - closestApproach);
inaccuracy = glm::length(collision->_contactPoint - expectedContactPoint);
if (fabs(inaccuracy) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: bad contactPoint: expected = " << expectedContactPoint
<< " actual = " << collision->_contactPoint
<< std::endl;
}
}
{ // sphereA hits end cap at axis
glm::vec3 axialOffset = (halfHeightB + alpha * radiusA + beta * radiusB) * yAxis;
sphereA.setPosition(axialOffset * yAxis);
if (!ShapeCollider::shapeShape(&sphereA, &capsuleB, collisions))
{
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: sphere and capsule should touch"
<< std::endl;
} else {
++numCollisions;
}
// penetration points from sphereA into capsuleB
CollisionInfo* collision = collisions.getCollision(numCollisions - 1);
glm::vec3 expectedPenetration = - ((1.f - alpha) * radiusA + (1.f - beta) * radiusB) * yAxis;
float inaccuracy = glm::length(collision->_penetration - expectedPenetration);
if (fabs(inaccuracy) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: bad penetration: expected = " << expectedPenetration
<< " actual = " << collision->_penetration
<< std::endl;
}
// contactPoint is on surface of sphereA
glm::vec3 expectedContactPoint = sphereA.getPosition() - radiusA * yAxis;
inaccuracy = glm::length(collision->_contactPoint - expectedContactPoint);
if (fabs(inaccuracy) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: bad contactPoint: expected = " << expectedContactPoint
<< " actual = " << collision->_contactPoint
<< std::endl;
}
// capsuleB collides with sphereA
if (!ShapeCollider::shapeShape(&capsuleB, &sphereA, collisions))
{
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: capsule and sphere should touch"
<< std::endl;
} else {
++numCollisions;
}
// penetration points from sphereA into capsuleB
collision = collisions.getCollision(numCollisions - 1);
expectedPenetration = ((1.f - alpha) * radiusA + (1.f - beta) * radiusB) * yAxis;
inaccuracy = glm::length(collision->_penetration - expectedPenetration);
if (fabs(inaccuracy) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: bad penetration: expected = " << expectedPenetration
<< " actual = " << collision->_penetration
<< std::endl;
}
// contactPoint is on surface of capsuleB
glm::vec3 endPoint;
capsuleB.getEndPoint(endPoint);
expectedContactPoint = endPoint + radiusB * yAxis;
inaccuracy = glm::length(collision->_contactPoint - expectedContactPoint);
if (fabs(inaccuracy) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: bad contactPoint: expected = " << expectedContactPoint
<< " actual = " << collision->_contactPoint
<< std::endl;
}
}
{ // sphereA hits start cap at axis
glm::vec3 axialOffset = - (halfHeightB + alpha * radiusA + beta * radiusB) * yAxis;
sphereA.setPosition(axialOffset * yAxis);
if (!ShapeCollider::shapeShape(&sphereA, &capsuleB, collisions))
{
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: sphere and capsule should touch"
<< std::endl;
} else {
++numCollisions;
}
// penetration points from sphereA into capsuleB
CollisionInfo* collision = collisions.getCollision(numCollisions - 1);
glm::vec3 expectedPenetration = ((1.f - alpha) * radiusA + (1.f - beta) * radiusB) * yAxis;
float inaccuracy = glm::length(collision->_penetration - expectedPenetration);
if (fabs(inaccuracy) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: bad penetration: expected = " << expectedPenetration
<< " actual = " << collision->_penetration
<< std::endl;
}
// contactPoint is on surface of sphereA
glm::vec3 expectedContactPoint = sphereA.getPosition() + radiusA * yAxis;
inaccuracy = glm::length(collision->_contactPoint - expectedContactPoint);
if (fabs(inaccuracy) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: bad contactPoint: expected = " << expectedContactPoint
<< " actual = " << collision->_contactPoint
<< std::endl;
}
// capsuleB collides with sphereA
if (!ShapeCollider::shapeShape(&capsuleB, &sphereA, collisions))
{
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: capsule and sphere should touch"
<< std::endl;
} else {
++numCollisions;
}
// penetration points from sphereA into capsuleB
collision = collisions.getCollision(numCollisions - 1);
expectedPenetration = - ((1.f - alpha) * radiusA + (1.f - beta) * radiusB) * yAxis;
inaccuracy = glm::length(collision->_penetration - expectedPenetration);
if (fabs(inaccuracy) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: bad penetration: expected = " << expectedPenetration
<< " actual = " << collision->_penetration
<< std::endl;
}
// contactPoint is on surface of capsuleB
glm::vec3 startPoint;
capsuleB.getStartPoint(startPoint);
expectedContactPoint = startPoint - radiusB * yAxis;
inaccuracy = glm::length(collision->_contactPoint - expectedContactPoint);
if (fabs(inaccuracy) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: bad contactPoint: expected = " << expectedContactPoint
<< " actual = " << collision->_contactPoint
<< std::endl;
}
}
if (collisions.size() != numCollisions) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: expected " << numCollisions << " collisions but actual number is " << collisions.size()
<< std::endl;
}
}
void ShapeColliderTests::capsuleMissesCapsule() {
// non-overlapping capsules
float radiusA = 2.f;
float halfHeightA = 3.f;
float radiusB = 3.f;
float halfHeightB = 4.f;
float totalRadius = radiusA + radiusB;
float totalHalfLength = totalRadius + halfHeightA + halfHeightB;
CapsuleShape capsuleA(radiusA, halfHeightA);
CapsuleShape capsuleB(radiusA, halfHeightA);
CollisionList collisions(16);
// side by side
capsuleB.setPosition((1.01f * totalRadius) * xAxis);
if (ShapeCollider::shapeShape(&capsuleA, &capsuleB, collisions))
{
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: capsule and capsule should NOT touch"
<< std::endl;
}
if (ShapeCollider::shapeShape(&capsuleB, &capsuleA, collisions))
{
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: capsule and capsule should NOT touch"
<< std::endl;
}
// end to end
capsuleB.setPosition((1.01f * totalHalfLength) * xAxis);
if (ShapeCollider::shapeShape(&capsuleA, &capsuleB, collisions))
{
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: capsule and capsule should NOT touch"
<< std::endl;
}
if (ShapeCollider::shapeShape(&capsuleB, &capsuleA, collisions))
{
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: capsule and capsule should NOT touch"
<< std::endl;
}
// rotate B and move it to the side
glm::quat rotation = glm::angleAxis(rightAngle, zAxis);
capsuleB.setRotation(rotation);
capsuleB.setPosition((1.01f * (totalRadius + capsuleB.getHalfHeight())) * xAxis);
if (ShapeCollider::shapeShape(&capsuleA, &capsuleB, collisions))
{
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: capsule and capsule should NOT touch"
<< std::endl;
}
if (ShapeCollider::shapeShape(&capsuleB, &capsuleA, collisions))
{
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: capsule and capsule should NOT touch"
<< std::endl;
}
if (collisions.size() > 0) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: expected empty collision list but size is " << collisions.size()
<< std::endl;
}
}
void ShapeColliderTests::capsuleTouchesCapsule() {
// overlapping capsules
float radiusA = 2.f;
float halfHeightA = 3.f;
float radiusB = 3.f;
float halfHeightB = 4.f;
float totalRadius = radiusA + radiusB;
float totalHalfLength = totalRadius + halfHeightA + halfHeightB;
CapsuleShape capsuleA(radiusA, halfHeightA);
CapsuleShape capsuleB(radiusB, halfHeightB);
CollisionList collisions(16);
int numCollisions = 0;
{ // side by side
capsuleB.setPosition((0.99f * totalRadius) * xAxis);
if (!ShapeCollider::shapeShape(&capsuleA, &capsuleB, collisions))
{
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: capsule and capsule should touch"
<< std::endl;
} else {
++numCollisions;
}
if (!ShapeCollider::shapeShape(&capsuleB, &capsuleA, collisions))
{
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: capsule and capsule should touch"
<< std::endl;
} else {
++numCollisions;
}
}
{ // end to end
capsuleB.setPosition((0.99f * totalHalfLength) * yAxis);
if (!ShapeCollider::shapeShape(&capsuleA, &capsuleB, collisions))
{
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: capsule and capsule should touch"
<< std::endl;
} else {
++numCollisions;
}
if (!ShapeCollider::shapeShape(&capsuleB, &capsuleA, collisions))
{
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: capsule and capsule should touch"
<< std::endl;
} else {
++numCollisions;
}
}
{ // rotate B and move it to the side
glm::quat rotation = glm::angleAxis(rightAngle, zAxis);
capsuleB.setRotation(rotation);
capsuleB.setPosition((0.99f * (totalRadius + capsuleB.getHalfHeight())) * xAxis);
if (!ShapeCollider::shapeShape(&capsuleA, &capsuleB, collisions))
{
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: capsule and capsule should touch"
<< std::endl;
} else {
++numCollisions;
}
if (!ShapeCollider::shapeShape(&capsuleB, &capsuleA, collisions))
{
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: capsule and capsule should touch"
<< std::endl;
} else {
++numCollisions;
}
}
{ // again, but this time check collision details
float overlap = 0.1f;
glm::quat rotation = glm::angleAxis(rightAngle, zAxis);
capsuleB.setRotation(rotation);
glm::vec3 positionB = ((totalRadius + capsuleB.getHalfHeight()) - overlap) * xAxis;
capsuleB.setPosition(positionB);
// capsuleA vs capsuleB
if (!ShapeCollider::shapeShape(&capsuleA, &capsuleB, collisions))
{
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: capsule and capsule should touch"
<< std::endl;
} else {
++numCollisions;
}
CollisionInfo* collision = collisions.getCollision(numCollisions - 1);
glm::vec3 expectedPenetration = overlap * xAxis;
float inaccuracy = glm::length(collision->_penetration - expectedPenetration);
if (fabs(inaccuracy) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: bad penetration: expected = " << expectedPenetration
<< " actual = " << collision->_penetration
<< std::endl;
}
glm::vec3 expectedContactPoint = capsuleA.getPosition() + radiusA * xAxis;
inaccuracy = glm::length(collision->_contactPoint - expectedContactPoint);
if (fabs(inaccuracy) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: bad contactPoint: expected = " << expectedContactPoint
<< " actual = " << collision->_contactPoint
<< std::endl;
}
// capsuleB vs capsuleA
if (!ShapeCollider::shapeShape(&capsuleB, &capsuleA, collisions))
{
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: capsule and capsule should touch"
<< std::endl;
} else {
++numCollisions;
}
collision = collisions.getCollision(numCollisions - 1);
expectedPenetration = - overlap * xAxis;
inaccuracy = glm::length(collision->_penetration - expectedPenetration);
if (fabs(inaccuracy) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: bad penetration: expected = " << expectedPenetration
<< " actual = " << collision->_penetration
<< std::endl;
}
expectedContactPoint = capsuleB.getPosition() - (radiusB + halfHeightB) * xAxis;
inaccuracy = glm::length(collision->_contactPoint - expectedContactPoint);
if (fabs(inaccuracy) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: bad contactPoint: expected = " << expectedContactPoint
<< " actual = " << collision->_contactPoint
<< std::endl;
}
}
{ // collide cylinder wall against cylinder wall
float overlap = 0.137f;
float shift = 0.317f * halfHeightA;
glm::quat rotation = glm::angleAxis(rightAngle, zAxis);
capsuleB.setRotation(rotation);
glm::vec3 positionB = (totalRadius - overlap) * zAxis + shift * yAxis;
capsuleB.setPosition(positionB);
// capsuleA vs capsuleB
if (!ShapeCollider::shapeShape(&capsuleA, &capsuleB, collisions))
{
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: capsule and capsule should touch"
<< std::endl;
} else {
++numCollisions;
}
CollisionInfo* collision = collisions.getCollision(numCollisions - 1);
glm::vec3 expectedPenetration = overlap * zAxis;
float inaccuracy = glm::length(collision->_penetration - expectedPenetration);
if (fabs(inaccuracy) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: bad penetration: expected = " << expectedPenetration
<< " actual = " << collision->_penetration
<< std::endl;
}
glm::vec3 expectedContactPoint = capsuleA.getPosition() + radiusA * zAxis + shift * yAxis;
inaccuracy = glm::length(collision->_contactPoint - expectedContactPoint);
if (fabs(inaccuracy) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__
<< " ERROR: bad contactPoint: expected = " << expectedContactPoint
<< " actual = " << collision->_contactPoint
<< std::endl;
}
}
}
void ShapeColliderTests::runAllTests() {
sphereMissesSphere();
sphereTouchesSphere();
sphereMissesCapsule();
sphereTouchesCapsule();
capsuleMissesCapsule();
capsuleTouchesCapsule();
}