overte/assignment-client/src/audio/AudioMixer.cpp

653 lines
28 KiB
C++

//
// AudioMixer.cpp
// assignment-client/src/audio
//
// Created by Stephen Birarda on 8/22/13.
// Copyright 2013 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include <mmintrin.h>
#include <errno.h>
#include <fcntl.h>
#include <fstream>
#include <iostream>
#include <math.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef _WIN32
#include <math.h>
#else
#include <arpa/inet.h>
#include <netinet/in.h>
#include <sys/socket.h>
#endif //_WIN32
#include <glm/glm.hpp>
#include <glm/gtx/norm.hpp>
#include <glm/gtx/vector_angle.hpp>
#include <QtCore/QCoreApplication>
#include <QtCore/QJsonArray>
#include <QtCore/QJsonDocument>
#include <QtCore/QJsonObject>
#include <QtCore/QJsonValue>
#include <QtCore/QTimer>
#include <QtNetwork/QNetworkRequest>
#include <QtNetwork/QNetworkReply>
#include <Logging.h>
#include <NetworkAccessManager.h>
#include <NodeList.h>
#include <Node.h>
#include <PacketHeaders.h>
#include <SharedUtil.h>
#include <StdDev.h>
#include <UUID.h>
#include "AudioRingBuffer.h"
#include "AudioMixerClientData.h"
#include "AvatarAudioRingBuffer.h"
#include "InjectedAudioRingBuffer.h"
#include "AudioMixer.h"
const float LOUDNESS_TO_DISTANCE_RATIO = 0.00001f;
const QString AUDIO_MIXER_LOGGING_TARGET_NAME = "audio-mixer";
void attachNewBufferToNode(Node *newNode) {
if (!newNode->getLinkedData()) {
newNode->setLinkedData(new AudioMixerClientData());
}
}
bool AudioMixer::_useDynamicJitterBuffers = false;
AudioMixer::AudioMixer(const QByteArray& packet) :
ThreadedAssignment(packet),
_trailingSleepRatio(1.0f),
_minAudibilityThreshold(LOUDNESS_TO_DISTANCE_RATIO / 2.0f),
_performanceThrottlingRatio(0.0f),
_numStatFrames(0),
_sumListeners(0),
_sumMixes(0),
_sourceUnattenuatedZone(NULL),
_listenerUnattenuatedZone(NULL),
_lastSendAudioStreamStatsTime(usecTimestampNow())
{
}
AudioMixer::~AudioMixer() {
delete _sourceUnattenuatedZone;
delete _listenerUnattenuatedZone;
}
const float ATTENUATION_BEGINS_AT_DISTANCE = 1.0f;
const float ATTENUATION_AMOUNT_PER_DOUBLING_IN_DISTANCE = 0.18f;
const float ATTENUATION_EPSILON_DISTANCE = 0.1f;
void AudioMixer::addBufferToMixForListeningNodeWithBuffer(PositionalAudioRingBuffer* bufferToAdd,
AvatarAudioRingBuffer* listeningNodeBuffer) {
// if the frame to be mixed is silent, don't mix it
if (bufferToAdd->getNextOutputTrailingLoudness() == 0.0f) {
bufferToAdd->popFrames(1);
return;
}
// get pointer to frame to be mixed. If the stream cannot provide a frame (is starved), bail
AudioRingBuffer::ConstIterator nextOutputStart;
if (!bufferToAdd->popFrames(&nextOutputStart, 1)) {
return;
}
float bearingRelativeAngleToSource = 0.0f;
float attenuationCoefficient = 1.0f;
int numSamplesDelay = 0;
float weakChannelAmplitudeRatio = 1.0f;
bool shouldAttenuate = (bufferToAdd != listeningNodeBuffer);
if (shouldAttenuate) {
// if the two buffer pointers do not match then these are different buffers
glm::vec3 relativePosition = bufferToAdd->getPosition() - listeningNodeBuffer->getPosition();
float distanceBetween = glm::length(relativePosition);
if (distanceBetween < EPSILON) {
distanceBetween = EPSILON;
}
if (bufferToAdd->getNextOutputTrailingLoudness() / distanceBetween <= _minAudibilityThreshold) {
// according to mixer performance we have decided this does not get to be mixed in
// bail out
return;
}
++_sumMixes;
if (bufferToAdd->getListenerUnattenuatedZone()) {
shouldAttenuate = !bufferToAdd->getListenerUnattenuatedZone()->contains(listeningNodeBuffer->getPosition());
}
if (bufferToAdd->getType() == PositionalAudioRingBuffer::Injector) {
attenuationCoefficient *= reinterpret_cast<InjectedAudioRingBuffer*>(bufferToAdd)->getAttenuationRatio();
}
shouldAttenuate = shouldAttenuate && distanceBetween > ATTENUATION_EPSILON_DISTANCE;
if (shouldAttenuate) {
glm::quat inverseOrientation = glm::inverse(listeningNodeBuffer->getOrientation());
float distanceSquareToSource = glm::dot(relativePosition, relativePosition);
float radius = 0.0f;
if (bufferToAdd->getType() == PositionalAudioRingBuffer::Injector) {
radius = reinterpret_cast<InjectedAudioRingBuffer*>(bufferToAdd)->getRadius();
}
if (radius == 0 || (distanceSquareToSource > radius * radius)) {
// this is either not a spherical source, or the listener is outside the sphere
if (radius > 0) {
// this is a spherical source - the distance used for the coefficient
// needs to be the closest point on the boundary to the source
// ovveride the distance to the node with the distance to the point on the
// boundary of the sphere
distanceSquareToSource -= (radius * radius);
} else {
// calculate the angle delivery for off-axis attenuation
glm::vec3 rotatedListenerPosition = glm::inverse(bufferToAdd->getOrientation()) * relativePosition;
float angleOfDelivery = glm::angle(glm::vec3(0.0f, 0.0f, -1.0f),
glm::normalize(rotatedListenerPosition));
const float MAX_OFF_AXIS_ATTENUATION = 0.2f;
const float OFF_AXIS_ATTENUATION_FORMULA_STEP = (1 - MAX_OFF_AXIS_ATTENUATION) / 2.0f;
float offAxisCoefficient = MAX_OFF_AXIS_ATTENUATION +
(OFF_AXIS_ATTENUATION_FORMULA_STEP * (angleOfDelivery / PI_OVER_TWO));
// multiply the current attenuation coefficient by the calculated off axis coefficient
attenuationCoefficient *= offAxisCoefficient;
}
glm::vec3 rotatedSourcePosition = inverseOrientation * relativePosition;
if (distanceBetween >= ATTENUATION_BEGINS_AT_DISTANCE) {
// calculate the distance coefficient using the distance to this node
float distanceCoefficient = 1 - (logf(distanceBetween / ATTENUATION_BEGINS_AT_DISTANCE) / logf(2.0f)
* ATTENUATION_AMOUNT_PER_DOUBLING_IN_DISTANCE);
if (distanceCoefficient < 0) {
distanceCoefficient = 0;
}
// multiply the current attenuation coefficient by the distance coefficient
attenuationCoefficient *= distanceCoefficient;
}
// project the rotated source position vector onto the XZ plane
rotatedSourcePosition.y = 0.0f;
// produce an oriented angle about the y-axis
bearingRelativeAngleToSource = glm::orientedAngle(glm::vec3(0.0f, 0.0f, -1.0f),
glm::normalize(rotatedSourcePosition),
glm::vec3(0.0f, 1.0f, 0.0f));
const float PHASE_AMPLITUDE_RATIO_AT_90 = 0.5;
// figure out the number of samples of delay and the ratio of the amplitude
// in the weak channel for audio spatialization
float sinRatio = fabsf(sinf(bearingRelativeAngleToSource));
numSamplesDelay = SAMPLE_PHASE_DELAY_AT_90 * sinRatio;
weakChannelAmplitudeRatio = 1 - (PHASE_AMPLITUDE_RATIO_AT_90 * sinRatio);
}
}
}
if (!bufferToAdd->isStereo() && shouldAttenuate && false) {
// this is a mono buffer, which means it gets full attenuation and spatialization
// if the bearing relative angle to source is > 0 then the delayed channel is the right one
int delayedChannelOffset = (bearingRelativeAngleToSource > 0.0f) ? 1 : 0;
int goodChannelOffset = delayedChannelOffset == 0 ? 1 : 0;
//const int16_t* bufferStart = bufferToAdd->getBuffer();
//int ringBufferSampleCapacity = bufferToAdd->getSampleCapacity();
int16_t correctBufferSample[2], delayBufferSample[2];
int delayedChannelIndex = 0;
const int SINGLE_STEREO_OFFSET = 2;
for (int s = 0; s < NETWORK_BUFFER_LENGTH_SAMPLES_STEREO; s += 4) {
// setup the int16_t variables for the two sample sets
correctBufferSample[0] = nextOutputStart[s / 2] * attenuationCoefficient;
correctBufferSample[1] = nextOutputStart[(s / 2) + 1] * attenuationCoefficient;
delayedChannelIndex = s + (numSamplesDelay * 2) + delayedChannelOffset;
delayBufferSample[0] = correctBufferSample[0] * weakChannelAmplitudeRatio;
delayBufferSample[1] = correctBufferSample[1] * weakChannelAmplitudeRatio;
_clientSamples[s + goodChannelOffset] += correctBufferSample[0];
_clientSamples[s + goodChannelOffset + SINGLE_STEREO_OFFSET] += correctBufferSample[1];
_clientSamples[delayedChannelIndex] += delayBufferSample[0];
_clientSamples[delayedChannelIndex + SINGLE_STEREO_OFFSET] += delayBufferSample[1];
}
if (numSamplesDelay > 0) {
// if there was a sample delay for this buffer, we need to pull samples prior to the nextOutput
// to stick at the beginning
float attenuationAndWeakChannelRatio = attenuationCoefficient * weakChannelAmplitudeRatio;
AudioRingBuffer::ConstIterator delayNextOutputStart = nextOutputStart - numSamplesDelay;
//if (delayNextOutputStart < bufferStart) {
//delayNextOutputStart = bufferStart + ringBufferSampleCapacity - numSamplesDelay;
//}
for (int i = 0; i < numSamplesDelay; i++) {
int parentIndex = i * 2;
_clientSamples[parentIndex + delayedChannelOffset] += *delayNextOutputStart * attenuationAndWeakChannelRatio;
++delayNextOutputStart;
}
}
} else {
int stereoDivider = bufferToAdd->isStereo() ? 1 : 2;
if (!shouldAttenuate) {
attenuationCoefficient = 1.0f;
}
for (int s = 0; s < NETWORK_BUFFER_LENGTH_SAMPLES_STEREO; s++) {
_clientSamples[s] = glm::clamp(_clientSamples[s] + (int)(nextOutputStart[s / stereoDivider] * attenuationCoefficient),
MIN_SAMPLE_VALUE, MAX_SAMPLE_VALUE);
}
/*// this is a stereo buffer or an unattenuated buffer, don't perform spatialization
for (int s = 0; s < NETWORK_BUFFER_LENGTH_SAMPLES_STEREO; s += 4) {
int stereoDivider = bufferToAdd->isStereo() ? 1 : 2;
if (!shouldAttenuate) {
attenuationCoefficient = 1.0f;
}
_clientSamples[s] = glm::clamp(_clientSamples[s]
+ (int) (nextOutputStart[(s / stereoDivider)] * attenuationCoefficient),
MIN_SAMPLE_VALUE, MAX_SAMPLE_VALUE);
_clientSamples[s + 1] = glm::clamp(_clientSamples[s + 1]
+ (int) (nextOutputStart[(s / stereoDivider) + (1 / stereoDivider)]
* attenuationCoefficient),
MIN_SAMPLE_VALUE, MAX_SAMPLE_VALUE);
_clientSamples[s + 2] = glm::clamp(_clientSamples[s + 2]
+ (int) (nextOutputStart[(s / stereoDivider) + (2 / stereoDivider)]
* attenuationCoefficient),
MIN_SAMPLE_VALUE, MAX_SAMPLE_VALUE);
_clientSamples[s + 3] = glm::clamp(_clientSamples[s + 3]
+ (int) (nextOutputStart[(s / stereoDivider) + (3 / stereoDivider)]
* attenuationCoefficient),
MIN_SAMPLE_VALUE, MAX_SAMPLE_VALUE);
}*/
}
}
void AudioMixer::prepareMixForListeningNode(Node* node) {
AvatarAudioRingBuffer* nodeRingBuffer = ((AudioMixerClientData*) node->getLinkedData())->getAvatarAudioRingBuffer();
// zero out the client mix for this node
memset(_clientSamples, 0, NETWORK_BUFFER_LENGTH_BYTES_STEREO);
// loop through all other nodes that have sufficient audio to mix
foreach (const SharedNodePointer& otherNode, NodeList::getInstance()->getNodeHash()) {
if (otherNode->getLinkedData()) {
AudioMixerClientData* otherNodeClientData = (AudioMixerClientData*) otherNode->getLinkedData();
// enumerate the ARBs attached to the otherNode and add all that should be added to mix
const QHash<QUuid, PositionalAudioRingBuffer*>& otherNodeRingBuffers = otherNodeClientData->getRingBuffers();
QHash<QUuid, PositionalAudioRingBuffer*>::ConstIterator i, end = otherNodeRingBuffers.constEnd();
for (i = otherNodeRingBuffers.begin(); i != end; i++) {
PositionalAudioRingBuffer* otherNodeBuffer = i.value();
if (*otherNode != *node || otherNodeBuffer->shouldLoopbackForNode()) {
addBufferToMixForListeningNodeWithBuffer(otherNodeBuffer, nodeRingBuffer);
} else {
otherNodeBuffer->popFrames(1);
}
}
}
}
}
void AudioMixer::readPendingDatagrams() {
QByteArray receivedPacket;
HifiSockAddr senderSockAddr;
NodeList* nodeList = NodeList::getInstance();
while (readAvailableDatagram(receivedPacket, senderSockAddr)) {
if (nodeList->packetVersionAndHashMatch(receivedPacket)) {
// pull any new audio data from nodes off of the network stack
PacketType mixerPacketType = packetTypeForPacket(receivedPacket);
if (mixerPacketType == PacketTypeMicrophoneAudioNoEcho
|| mixerPacketType == PacketTypeMicrophoneAudioWithEcho
|| mixerPacketType == PacketTypeInjectAudio
|| mixerPacketType == PacketTypeSilentAudioFrame
|| mixerPacketType == PacketTypeAudioStreamStats) {
nodeList->findNodeAndUpdateWithDataFromPacket(receivedPacket);
} else if (mixerPacketType == PacketTypeMuteEnvironment) {
QByteArray packet = receivedPacket;
populatePacketHeader(packet, PacketTypeMuteEnvironment);
foreach (const SharedNodePointer& node, nodeList->getNodeHash()) {
if (node->getType() == NodeType::Agent && node->getActiveSocket() && node->getLinkedData() && node != nodeList->sendingNodeForPacket(receivedPacket)) {
nodeList->writeDatagram(packet, packet.size(), node);
}
}
} else {
// let processNodeData handle it.
nodeList->processNodeData(senderSockAddr, receivedPacket);
}
}
}
}
void AudioMixer::sendStatsPacket() {
static QJsonObject statsObject;
statsObject["useDynamicJitterBuffers"] = _useDynamicJitterBuffers;
statsObject["trailing_sleep_percentage"] = _trailingSleepRatio * 100.0f;
statsObject["performance_throttling_ratio"] = _performanceThrottlingRatio;
statsObject["average_listeners_per_frame"] = (float) _sumListeners / (float) _numStatFrames;
if (_sumListeners > 0) {
statsObject["average_mixes_per_listener"] = (float) _sumMixes / (float) _sumListeners;
} else {
statsObject["average_mixes_per_listener"] = 0.0;
}
ThreadedAssignment::addPacketStatsAndSendStatsPacket(statsObject);
_sumListeners = 0;
_sumMixes = 0;
_numStatFrames = 0;
// NOTE: These stats can be too large to fit in an MTU, so we break it up into multiple packts...
QJsonObject statsObject2;
// add stats for each listerner
bool somethingToSend = false;
int sizeOfStats = 0;
int TOO_BIG_FOR_MTU = 1200; // some extra space for JSONification
NodeList* nodeList = NodeList::getInstance();
int clientNumber = 0;
foreach (const SharedNodePointer& node, nodeList->getNodeHash()) {
clientNumber++;
AudioMixerClientData* clientData = static_cast<AudioMixerClientData*>(node->getLinkedData());
if (clientData) {
QString property = "jitterStats." + node->getUUID().toString();
QString value = clientData->getAudioStreamStatsString();
statsObject2[qPrintable(property)] = value;
somethingToSend = true;
sizeOfStats += property.size() + value.size();
}
// if we're too large, send the packet
if (sizeOfStats > TOO_BIG_FOR_MTU) {
nodeList->sendStatsToDomainServer(statsObject2);
sizeOfStats = 0;
statsObject2 = QJsonObject(); // clear it
somethingToSend = false;
}
}
if (somethingToSend) {
nodeList->sendStatsToDomainServer(statsObject2);
}
}
void AudioMixer::run() {
ThreadedAssignment::commonInit(AUDIO_MIXER_LOGGING_TARGET_NAME, NodeType::AudioMixer);
NodeList* nodeList = NodeList::getInstance();
nodeList->addNodeTypeToInterestSet(NodeType::Agent);
nodeList->linkedDataCreateCallback = attachNewBufferToNode;
// setup a NetworkAccessManager to ask the domain-server for our settings
NetworkAccessManager& networkManager = NetworkAccessManager::getInstance();
QUrl settingsJSONURL;
settingsJSONURL.setScheme("http");
settingsJSONURL.setHost(nodeList->getDomainHandler().getHostname());
settingsJSONURL.setPort(DOMAIN_SERVER_HTTP_PORT);
settingsJSONURL.setPath("/settings.json");
settingsJSONURL.setQuery(QString("type=%1").arg(_type));
QNetworkReply *reply = NULL;
int failedAttempts = 0;
const int MAX_SETTINGS_REQUEST_FAILED_ATTEMPTS = 5;
qDebug() << "Requesting settings for assignment from domain-server at" << settingsJSONURL.toString();
while (!reply || reply->error() != QNetworkReply::NoError) {
reply = networkManager.get(QNetworkRequest(settingsJSONURL));
QEventLoop loop;
QObject::connect(reply, SIGNAL(finished()), &loop, SLOT(quit()));
loop.exec();
++failedAttempts;
if (failedAttempts == MAX_SETTINGS_REQUEST_FAILED_ATTEMPTS) {
qDebug() << "Failed to get settings from domain-server. Bailing on assignment.";
setFinished(true);
return;
}
}
QJsonObject settingsObject = QJsonDocument::fromJson(reply->readAll()).object();
// check the settings object to see if we have anything we can parse out
const QString AUDIO_GROUP_KEY = "audio";
if (settingsObject.contains(AUDIO_GROUP_KEY)) {
QJsonObject audioGroupObject = settingsObject[AUDIO_GROUP_KEY].toObject();
const QString UNATTENUATED_ZONE_KEY = "unattenuated-zone";
QString unattenuatedZoneString = audioGroupObject[UNATTENUATED_ZONE_KEY].toString();
if (!unattenuatedZoneString.isEmpty()) {
QStringList zoneStringList = unattenuatedZoneString.split(',');
glm::vec3 sourceCorner(zoneStringList[0].toFloat(), zoneStringList[1].toFloat(), zoneStringList[2].toFloat());
glm::vec3 sourceDimensions(zoneStringList[3].toFloat(), zoneStringList[4].toFloat(), zoneStringList[5].toFloat());
glm::vec3 listenerCorner(zoneStringList[6].toFloat(), zoneStringList[7].toFloat(), zoneStringList[8].toFloat());
glm::vec3 listenerDimensions(zoneStringList[9].toFloat(), zoneStringList[10].toFloat(), zoneStringList[11].toFloat());
_sourceUnattenuatedZone = new AABox(sourceCorner, sourceDimensions);
_listenerUnattenuatedZone = new AABox(listenerCorner, listenerDimensions);
glm::vec3 sourceCenter = _sourceUnattenuatedZone->calcCenter();
glm::vec3 destinationCenter = _listenerUnattenuatedZone->calcCenter();
qDebug() << "There is an unattenuated zone with source center at"
<< QString("%1, %2, %3").arg(sourceCenter.x).arg(sourceCenter.y).arg(sourceCenter.z);
qDebug() << "Buffers inside this zone will not be attenuated inside a box with center at"
<< QString("%1, %2, %3").arg(destinationCenter.x).arg(destinationCenter.y).arg(destinationCenter.z);
}
// check the payload to see if we have asked for dynamicJitterBuffer support
const QString DYNAMIC_JITTER_BUFFER_JSON_KEY = "dynamic-jitter-buffer";
bool shouldUseDynamicJitterBuffers = audioGroupObject[DYNAMIC_JITTER_BUFFER_JSON_KEY].toBool();
if (shouldUseDynamicJitterBuffers) {
qDebug() << "Enable dynamic jitter buffers.";
_useDynamicJitterBuffers = true;
} else {
qDebug() << "Dynamic jitter buffers disabled, using old behavior.";
_useDynamicJitterBuffers = false;
}
}
int nextFrame = 0;
QElapsedTimer timer;
timer.start();
char* clientMixBuffer = new char[NETWORK_BUFFER_LENGTH_BYTES_STEREO + sizeof(quint16)
+ numBytesForPacketHeaderGivenPacketType(PacketTypeMixedAudio)];
int usecToSleep = BUFFER_SEND_INTERVAL_USECS;
const int TRAILING_AVERAGE_FRAMES = 100;
int framesSinceCutoffEvent = TRAILING_AVERAGE_FRAMES;
while (!_isFinished) {
/*foreach (const SharedNodePointer& node, nodeList->getNodeHash()) {
if (node->getLinkedData()) {
((AudioMixerClientData*) node->getLinkedData())->checkBuffersBeforeFrameSend(_sourceUnattenuatedZone,
_listenerUnattenuatedZone);
}
}*/
const float STRUGGLE_TRIGGER_SLEEP_PERCENTAGE_THRESHOLD = 0.10f;
const float BACK_OFF_TRIGGER_SLEEP_PERCENTAGE_THRESHOLD = 0.20f;
const float RATIO_BACK_OFF = 0.02f;
const float CURRENT_FRAME_RATIO = 1.0f / TRAILING_AVERAGE_FRAMES;
const float PREVIOUS_FRAMES_RATIO = 1.0f - CURRENT_FRAME_RATIO;
if (usecToSleep < 0) {
usecToSleep = 0;
}
_trailingSleepRatio = (PREVIOUS_FRAMES_RATIO * _trailingSleepRatio)
+ (usecToSleep * CURRENT_FRAME_RATIO / (float) BUFFER_SEND_INTERVAL_USECS);
float lastCutoffRatio = _performanceThrottlingRatio;
bool hasRatioChanged = false;
if (framesSinceCutoffEvent >= TRAILING_AVERAGE_FRAMES) {
if (_trailingSleepRatio <= STRUGGLE_TRIGGER_SLEEP_PERCENTAGE_THRESHOLD) {
// we're struggling - change our min required loudness to reduce some load
_performanceThrottlingRatio = _performanceThrottlingRatio + (0.5f * (1.0f - _performanceThrottlingRatio));
qDebug() << "Mixer is struggling, sleeping" << _trailingSleepRatio * 100 << "% of frame time. Old cutoff was"
<< lastCutoffRatio << "and is now" << _performanceThrottlingRatio;
hasRatioChanged = true;
} else if (_trailingSleepRatio >= BACK_OFF_TRIGGER_SLEEP_PERCENTAGE_THRESHOLD && _performanceThrottlingRatio != 0) {
// we've recovered and can back off the required loudness
_performanceThrottlingRatio = _performanceThrottlingRatio - RATIO_BACK_OFF;
if (_performanceThrottlingRatio < 0) {
_performanceThrottlingRatio = 0;
}
qDebug() << "Mixer is recovering, sleeping" << _trailingSleepRatio * 100 << "% of frame time. Old cutoff was"
<< lastCutoffRatio << "and is now" << _performanceThrottlingRatio;
hasRatioChanged = true;
}
if (hasRatioChanged) {
// set out min audability threshold from the new ratio
_minAudibilityThreshold = LOUDNESS_TO_DISTANCE_RATIO / (2.0f * (1.0f - _performanceThrottlingRatio));
qDebug() << "Minimum audability required to be mixed is now" << _minAudibilityThreshold;
framesSinceCutoffEvent = 0;
}
}
if (!hasRatioChanged) {
++framesSinceCutoffEvent;
}
bool sendAudioStreamStats = false;
quint64 now = usecTimestampNow();
if (now - _lastSendAudioStreamStatsTime > TOO_LONG_SINCE_LAST_SEND_AUDIO_STREAM_STATS) {
_lastSendAudioStreamStatsTime = now;
sendAudioStreamStats = true;
}
foreach (const SharedNodePointer& node, nodeList->getNodeHash()) {
if (node->getType() == NodeType::Agent && node->getActiveSocket() && node->getLinkedData()
&& ((AudioMixerClientData*) node->getLinkedData())->getAvatarAudioRingBuffer()) {
AudioMixerClientData* nodeData = (AudioMixerClientData*)node->getLinkedData();
prepareMixForListeningNode(node.data());
// pack header
int numBytesPacketHeader = populatePacketHeader(clientMixBuffer, PacketTypeMixedAudio);
char* dataAt = clientMixBuffer + numBytesPacketHeader;
// pack sequence number
quint16 sequence = nodeData->getOutgoingSequenceNumber();
memcpy(dataAt, &sequence, sizeof(quint16));
dataAt += sizeof(quint16);
// pack mixed audio samples
memcpy(dataAt, _clientSamples, NETWORK_BUFFER_LENGTH_BYTES_STEREO);
dataAt += NETWORK_BUFFER_LENGTH_BYTES_STEREO;
// send mixed audio packet
nodeList->writeDatagram(clientMixBuffer, dataAt - clientMixBuffer, node);
nodeData->incrementOutgoingMixedAudioSequenceNumber();
// send an audio stream stats packet if it's time
if (sendAudioStreamStats) {
nodeData->sendAudioStreamStatsPackets(node);
}
++_sumListeners;
}
}
/*
// push forward the next output pointers for any audio buffers we used
foreach (const SharedNodePointer& node, nodeList->getNodeHash()) {
if (node->getLinkedData()) {
((AudioMixerClientData*) node->getLinkedData())->pushBuffersAfterFrameSend();
}
}*/
++_numStatFrames;
QCoreApplication::processEvents();
if (_isFinished) {
break;
}
usecToSleep = (++nextFrame * BUFFER_SEND_INTERVAL_USECS) - timer.nsecsElapsed() / 1000; // ns to us
if (usecToSleep > 0) {
usleep(usecToSleep);
}
}
delete[] clientMixBuffer;
}