mirror of
https://github.com/overte-org/overte.git
synced 2025-04-26 05:36:40 +02:00
832 lines
37 KiB
C++
832 lines
37 KiB
C++
//
|
|
// EntityTreeElement.cpp
|
|
// libraries/entities/src
|
|
//
|
|
// Created by Brad Hefta-Gaub on 12/4/13.
|
|
// Copyright 2013 High Fidelity, Inc.
|
|
//
|
|
// Distributed under the Apache License, Version 2.0.
|
|
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
|
|
//
|
|
|
|
#include <glm/gtx/transform.hpp>
|
|
|
|
#include <AACubeShape.h>
|
|
#include <ShapeCollider.h>
|
|
|
|
#include <FBXReader.h>
|
|
#include <GeometryUtil.h>
|
|
|
|
#include "EntityTree.h"
|
|
#include "EntityTreeElement.h"
|
|
|
|
EntityTreeElement::EntityTreeElement(unsigned char* octalCode) : OctreeElement(), _entityItems(NULL) {
|
|
init(octalCode);
|
|
};
|
|
|
|
EntityTreeElement::~EntityTreeElement() {
|
|
_voxelMemoryUsage -= sizeof(EntityTreeElement);
|
|
delete _entityItems;
|
|
_entityItems = NULL;
|
|
}
|
|
|
|
// This will be called primarily on addChildAt(), which means we're adding a child of our
|
|
// own type to our own tree. This means we should initialize that child with any tree and type
|
|
// specific settings that our children must have. One example is out VoxelSystem, which
|
|
// we know must match ours.
|
|
OctreeElement* EntityTreeElement::createNewElement(unsigned char* octalCode) {
|
|
EntityTreeElement* newChild = new EntityTreeElement(octalCode);
|
|
newChild->setTree(_myTree);
|
|
return newChild;
|
|
}
|
|
|
|
void EntityTreeElement::init(unsigned char* octalCode) {
|
|
OctreeElement::init(octalCode);
|
|
_entityItems = new QList<EntityItem*>;
|
|
_voxelMemoryUsage += sizeof(EntityTreeElement);
|
|
}
|
|
|
|
EntityTreeElement* EntityTreeElement::addChildAtIndex(int index) {
|
|
EntityTreeElement* newElement = (EntityTreeElement*)OctreeElement::addChildAtIndex(index);
|
|
newElement->setTree(_myTree);
|
|
return newElement;
|
|
}
|
|
|
|
void EntityTreeElement::debugExtraEncodeData(EncodeBitstreamParams& params) const {
|
|
qDebug() << "EntityTreeElement::debugExtraEncodeData()... ";
|
|
qDebug() << " element:" << getAACube();
|
|
|
|
OctreeElementExtraEncodeData* extraEncodeData = params.extraEncodeData;
|
|
assert(extraEncodeData); // EntityTrees always require extra encode data on their encoding passes
|
|
|
|
if (extraEncodeData->contains(this)) {
|
|
EntityTreeElementExtraEncodeData* entityTreeElementExtraEncodeData
|
|
= static_cast<EntityTreeElementExtraEncodeData*>(extraEncodeData->value(this));
|
|
qDebug() << " encode data:" << entityTreeElementExtraEncodeData;
|
|
} else {
|
|
qDebug() << " encode data: MISSING!!";
|
|
}
|
|
}
|
|
|
|
void EntityTreeElement::initializeExtraEncodeData(EncodeBitstreamParams& params) const {
|
|
OctreeElementExtraEncodeData* extraEncodeData = params.extraEncodeData;
|
|
assert(extraEncodeData); // EntityTrees always require extra encode data on their encoding passes
|
|
// Check to see if this element yet has encode data... if it doesn't create it
|
|
if (!extraEncodeData->contains(this)) {
|
|
EntityTreeElementExtraEncodeData* entityTreeElementExtraEncodeData = new EntityTreeElementExtraEncodeData();
|
|
entityTreeElementExtraEncodeData->elementCompleted = (_entityItems->size() == 0);
|
|
for (int i = 0; i < NUMBER_OF_CHILDREN; i++) {
|
|
EntityTreeElement* child = getChildAtIndex(i);
|
|
if (!child) {
|
|
entityTreeElementExtraEncodeData->childCompleted[i] = true; // if no child exists, it is completed
|
|
} else {
|
|
if (child->hasEntities()) {
|
|
entityTreeElementExtraEncodeData->childCompleted[i] = false; // HAS ENTITIES NEEDS ENCODING
|
|
} else {
|
|
entityTreeElementExtraEncodeData->childCompleted[i] = true; // child doesn't have enities, it is completed
|
|
}
|
|
}
|
|
}
|
|
for (uint16_t i = 0; i < _entityItems->size(); i++) {
|
|
EntityItem* entity = (*_entityItems)[i];
|
|
entityTreeElementExtraEncodeData->entities.insert(entity->getEntityItemID(), entity->getEntityProperties(params));
|
|
}
|
|
|
|
// TODO: some of these inserts might be redundant!!!
|
|
extraEncodeData->insert(this, entityTreeElementExtraEncodeData);
|
|
}
|
|
}
|
|
|
|
bool EntityTreeElement::shouldIncludeChildData(int childIndex, EncodeBitstreamParams& params) const {
|
|
OctreeElementExtraEncodeData* extraEncodeData = params.extraEncodeData;
|
|
assert(extraEncodeData); // EntityTrees always require extra encode data on their encoding passes
|
|
|
|
if (extraEncodeData->contains(this)) {
|
|
EntityTreeElementExtraEncodeData* entityTreeElementExtraEncodeData
|
|
= static_cast<EntityTreeElementExtraEncodeData*>(extraEncodeData->value(this));
|
|
|
|
bool childCompleted = entityTreeElementExtraEncodeData->childCompleted[childIndex];
|
|
|
|
// If we haven't completely sent the child yet, then we should include it
|
|
return !childCompleted;
|
|
}
|
|
|
|
// I'm not sure this should ever happen, since we should have the extra encode data if we're considering
|
|
// the child data for this element
|
|
assert(false);
|
|
return false;
|
|
}
|
|
|
|
bool EntityTreeElement::shouldRecurseChildTree(int childIndex, EncodeBitstreamParams& params) const {
|
|
EntityTreeElement* childElement = getChildAtIndex(childIndex);
|
|
if (childElement->alreadyFullyEncoded(params)) {
|
|
return false;
|
|
}
|
|
|
|
return true; // if we don't know otherwise than recurse!
|
|
}
|
|
|
|
bool EntityTreeElement::alreadyFullyEncoded(EncodeBitstreamParams& params) const {
|
|
OctreeElementExtraEncodeData* extraEncodeData = params.extraEncodeData;
|
|
assert(extraEncodeData); // EntityTrees always require extra encode data on their encoding passes
|
|
|
|
if (extraEncodeData->contains(this)) {
|
|
EntityTreeElementExtraEncodeData* entityTreeElementExtraEncodeData
|
|
= static_cast<EntityTreeElementExtraEncodeData*>(extraEncodeData->value(this));
|
|
|
|
// If we know that ALL subtrees below us have already been recursed, then we don't
|
|
// need to recurse this child.
|
|
return entityTreeElementExtraEncodeData->subtreeCompleted;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void EntityTreeElement::updateEncodedData(int childIndex, AppendState childAppendState, EncodeBitstreamParams& params) const {
|
|
OctreeElementExtraEncodeData* extraEncodeData = params.extraEncodeData;
|
|
assert(extraEncodeData); // EntityTrees always require extra encode data on their encoding passes
|
|
if (extraEncodeData->contains(this)) {
|
|
EntityTreeElementExtraEncodeData* entityTreeElementExtraEncodeData
|
|
= static_cast<EntityTreeElementExtraEncodeData*>(extraEncodeData->value(this));
|
|
|
|
if (childAppendState == OctreeElement::COMPLETED) {
|
|
entityTreeElementExtraEncodeData->childCompleted[childIndex] = true;
|
|
}
|
|
} else {
|
|
assert(false); // this shouldn't happen!
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
void EntityTreeElement::elementEncodeComplete(EncodeBitstreamParams& params, OctreeElementBag* bag) const {
|
|
const bool wantDebug = false;
|
|
|
|
if (wantDebug) {
|
|
qDebug() << "EntityTreeElement::elementEncodeComplete() element:" << getAACube();
|
|
}
|
|
|
|
OctreeElementExtraEncodeData* extraEncodeData = params.extraEncodeData;
|
|
assert(extraEncodeData); // EntityTrees always require extra encode data on their encoding passes
|
|
assert(extraEncodeData->contains(this));
|
|
|
|
EntityTreeElementExtraEncodeData* thisExtraEncodeData
|
|
= static_cast<EntityTreeElementExtraEncodeData*>(extraEncodeData->value(this));
|
|
|
|
// Note: this will be called when OUR element has finished running through encodeTreeBitstreamRecursion()
|
|
// which means, it's possible that our parent element hasn't finished encoding OUR data... so
|
|
// in this case, our children may be complete, and we should clean up their encode data...
|
|
// but not necessarily cleanup our own encode data...
|
|
//
|
|
// If we're really complete here's what must be true...
|
|
// 1) out own data must be complete
|
|
// 2) the data for all our immediate children must be complete.
|
|
// However, the following might also be the case...
|
|
// 1) it's ok for our child trees to not yet be fully encoded/complete...
|
|
// SO LONG AS... the our child's node is in the bag ready for encoding
|
|
|
|
bool someChildTreeNotComplete = false;
|
|
for (int i = 0; i < NUMBER_OF_CHILDREN; i++) {
|
|
EntityTreeElement* childElement = getChildAtIndex(i);
|
|
if (childElement) {
|
|
|
|
// why would this ever fail???
|
|
// If we've encoding this element before... but we're coming back a second time in an attempt to
|
|
// encoud our parent... this might happen.
|
|
if (extraEncodeData->contains(childElement)) {
|
|
EntityTreeElementExtraEncodeData* childExtraEncodeData
|
|
= static_cast<EntityTreeElementExtraEncodeData*>(extraEncodeData->value(childElement));
|
|
|
|
if (wantDebug) {
|
|
qDebug() << "checking child: " << childElement->getAACube();
|
|
qDebug() << " childElement->isLeaf():" << childElement->isLeaf();
|
|
qDebug() << " childExtraEncodeData->elementCompleted:" << childExtraEncodeData->elementCompleted;
|
|
qDebug() << " childExtraEncodeData->subtreeCompleted:" << childExtraEncodeData->subtreeCompleted;
|
|
}
|
|
|
|
if (childElement->isLeaf() && childExtraEncodeData->elementCompleted) {
|
|
if (wantDebug) {
|
|
qDebug() << " CHILD IS LEAF -- AND CHILD ELEMENT DATA COMPLETED!!!";
|
|
}
|
|
childExtraEncodeData->subtreeCompleted = true;
|
|
}
|
|
|
|
if (!childExtraEncodeData->elementCompleted || !childExtraEncodeData->subtreeCompleted) {
|
|
someChildTreeNotComplete = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (wantDebug) {
|
|
qDebug() << "for this element: " << getAACube();
|
|
qDebug() << " WAS elementCompleted:" << thisExtraEncodeData->elementCompleted;
|
|
qDebug() << " WAS subtreeCompleted:" << thisExtraEncodeData->subtreeCompleted;
|
|
}
|
|
|
|
thisExtraEncodeData->subtreeCompleted = !someChildTreeNotComplete;
|
|
|
|
if (wantDebug) {
|
|
qDebug() << " NOW elementCompleted:" << thisExtraEncodeData->elementCompleted;
|
|
qDebug() << " NOW subtreeCompleted:" << thisExtraEncodeData->subtreeCompleted;
|
|
|
|
if (thisExtraEncodeData->subtreeCompleted) {
|
|
qDebug() << " YEAH!!!!! >>>>>>>>>>>>>> NOW subtreeCompleted:" << thisExtraEncodeData->subtreeCompleted;
|
|
}
|
|
}
|
|
}
|
|
|
|
OctreeElement::AppendState EntityTreeElement::appendElementData(OctreePacketData* packetData,
|
|
EncodeBitstreamParams& params) const {
|
|
|
|
OctreeElement::AppendState appendElementState = OctreeElement::COMPLETED; // assume the best...
|
|
|
|
// first, check the params.extraEncodeData to see if there's any partial re-encode data for this element
|
|
OctreeElementExtraEncodeData* extraEncodeData = params.extraEncodeData;
|
|
EntityTreeElementExtraEncodeData* entityTreeElementExtraEncodeData = NULL;
|
|
bool hadElementExtraData = false;
|
|
if (extraEncodeData && extraEncodeData->contains(this)) {
|
|
entityTreeElementExtraEncodeData = static_cast<EntityTreeElementExtraEncodeData*>(extraEncodeData->value(this));
|
|
hadElementExtraData = true;
|
|
} else {
|
|
// if there wasn't one already, then create one
|
|
entityTreeElementExtraEncodeData = new EntityTreeElementExtraEncodeData();
|
|
entityTreeElementExtraEncodeData->elementCompleted = (_entityItems->size() == 0);
|
|
|
|
for (int i = 0; i < NUMBER_OF_CHILDREN; i++) {
|
|
EntityTreeElement* child = getChildAtIndex(i);
|
|
if (!child) {
|
|
entityTreeElementExtraEncodeData->childCompleted[i] = true; // if no child exists, it is completed
|
|
} else {
|
|
if (child->hasEntities()) {
|
|
entityTreeElementExtraEncodeData->childCompleted[i] = false;
|
|
} else {
|
|
entityTreeElementExtraEncodeData->childCompleted[i] = true; // if the child doesn't have enities, it is completed
|
|
}
|
|
}
|
|
}
|
|
for (uint16_t i = 0; i < _entityItems->size(); i++) {
|
|
EntityItem* entity = (*_entityItems)[i];
|
|
entityTreeElementExtraEncodeData->entities.insert(entity->getEntityItemID(), entity->getEntityProperties(params));
|
|
}
|
|
}
|
|
|
|
//assert(extraEncodeData);
|
|
//assert(extraEncodeData->contains(this));
|
|
//entityTreeElementExtraEncodeData = static_cast<EntityTreeElementExtraEncodeData*>(extraEncodeData->value(this));
|
|
|
|
LevelDetails elementLevel = packetData->startLevel();
|
|
|
|
// write our entities out... first determine which of the entities are in view based on our params
|
|
uint16_t numberOfEntities = 0;
|
|
uint16_t actualNumberOfEntities = 0;
|
|
QVector<uint16_t> indexesOfEntitiesToInclude;
|
|
|
|
// It's possible that our element has been previous completed. In this case we'll simply not include any of our
|
|
// entities for encoding. This is needed because we encode the element data at the "parent" level, and so we
|
|
// need to handle the case where our sibling elements need encoding but we don't.
|
|
if (!entityTreeElementExtraEncodeData->elementCompleted) {
|
|
for (uint16_t i = 0; i < _entityItems->size(); i++) {
|
|
EntityItem* entity = (*_entityItems)[i];
|
|
bool includeThisEntity = true;
|
|
|
|
if (!params.forceSendScene && entity->getLastChangedOnServer() < params.lastViewFrustumSent) {
|
|
includeThisEntity = false;
|
|
}
|
|
|
|
if (hadElementExtraData) {
|
|
includeThisEntity = includeThisEntity &&
|
|
entityTreeElementExtraEncodeData->entities.contains(entity->getEntityItemID());
|
|
}
|
|
|
|
if (includeThisEntity && params.viewFrustum) {
|
|
|
|
// we want to use the maximum possible box for this, so that we don't have to worry about the nuance of
|
|
// simulation changing what's visible. consider the case where the entity contains an angular velocity
|
|
// the entity may not be in view and then in view a frame later, let the client side handle it's view
|
|
// frustum culling on rendering.
|
|
AACube entityCube = entity->getMaximumAACube();
|
|
entityCube.scale(TREE_SCALE);
|
|
if (params.viewFrustum->cubeInFrustum(entityCube) == ViewFrustum::OUTSIDE) {
|
|
includeThisEntity = false; // out of view, don't include it
|
|
}
|
|
}
|
|
|
|
if (includeThisEntity) {
|
|
indexesOfEntitiesToInclude << i;
|
|
numberOfEntities++;
|
|
}
|
|
}
|
|
}
|
|
|
|
int numberOfEntitiesOffset = packetData->getUncompressedByteOffset();
|
|
bool successAppendEntityCount = packetData->appendValue(numberOfEntities);
|
|
|
|
if (successAppendEntityCount) {
|
|
foreach (uint16_t i, indexesOfEntitiesToInclude) {
|
|
EntityItem* entity = (*_entityItems)[i];
|
|
LevelDetails entityLevel = packetData->startLevel();
|
|
OctreeElement::AppendState appendEntityState = entity->appendEntityData(packetData,
|
|
params, entityTreeElementExtraEncodeData);
|
|
|
|
// If none of this entity data was able to be appended, then discard it
|
|
// and don't include it in our entity count
|
|
if (appendEntityState == OctreeElement::NONE) {
|
|
packetData->discardLevel(entityLevel);
|
|
} else {
|
|
// If either ALL or some of it got appended, then end the level (commit it)
|
|
// and include the entity in our final count of entities
|
|
packetData->endLevel(entityLevel);
|
|
actualNumberOfEntities++;
|
|
}
|
|
|
|
// If the entity item got completely appended, then we can remove it from the extra encode data
|
|
if (appendEntityState == OctreeElement::COMPLETED) {
|
|
entityTreeElementExtraEncodeData->entities.remove(entity->getEntityItemID());
|
|
}
|
|
|
|
// If any part of the entity items didn't fit, then the element is considered partial
|
|
// NOTE: if the entity item didn't fit or only partially fit, then the entity item should have
|
|
// added itself to the extra encode data.
|
|
if (appendEntityState != OctreeElement::COMPLETED) {
|
|
appendElementState = OctreeElement::PARTIAL;
|
|
}
|
|
}
|
|
} else {
|
|
// we we couldn't add the entity count, then we couldn't add anything for this element and we're in a NONE state
|
|
appendElementState = OctreeElement::NONE;
|
|
}
|
|
|
|
// If we were provided with extraEncodeData, and we allocated and/or got entityTreeElementExtraEncodeData
|
|
// then we need to do some additional processing, namely make sure our extraEncodeData is up to date for
|
|
// this octree element.
|
|
if (extraEncodeData && entityTreeElementExtraEncodeData) {
|
|
|
|
// After processing, if we are PARTIAL or COMPLETED then we need to re-include our extra data.
|
|
// Only our patent can remove our extra data in these cases and only after it knows that all of it's
|
|
// children have been encoded.
|
|
// If we weren't able to encode ANY data about ourselves, then we go ahead and remove our element data
|
|
// since that will signal that the entire element needs to be encoded on the next attempt
|
|
if (appendElementState == OctreeElement::NONE) {
|
|
|
|
if (!entityTreeElementExtraEncodeData->elementCompleted && entityTreeElementExtraEncodeData->entities.size() == 0) {
|
|
// TODO: we used to delete the extra encode data here. But changing the logic around
|
|
// this is now a dead code branch. Clean this up!
|
|
} else {
|
|
// TODO: some of these inserts might be redundant!!!
|
|
extraEncodeData->insert(this, entityTreeElementExtraEncodeData);
|
|
}
|
|
} else {
|
|
|
|
// If we weren't previously completed, check to see if we are
|
|
if (!entityTreeElementExtraEncodeData->elementCompleted) {
|
|
// If all of our items have been encoded, then we are complete as an element.
|
|
if (entityTreeElementExtraEncodeData->entities.size() == 0) {
|
|
entityTreeElementExtraEncodeData->elementCompleted = true;
|
|
}
|
|
}
|
|
|
|
// TODO: some of these inserts might be redundant!!!
|
|
extraEncodeData->insert(this, entityTreeElementExtraEncodeData);
|
|
}
|
|
}
|
|
|
|
// Determine if no entities at all were able to fit
|
|
bool noEntitiesFit = (numberOfEntities > 0 && actualNumberOfEntities == 0);
|
|
|
|
// If we wrote fewer entities than we expected, update the number of entities in our packet
|
|
bool successUpdateEntityCount = true;
|
|
if (!noEntitiesFit && numberOfEntities != actualNumberOfEntities) {
|
|
successUpdateEntityCount = packetData->updatePriorBytes(numberOfEntitiesOffset,
|
|
(const unsigned char*)&actualNumberOfEntities, sizeof(actualNumberOfEntities));
|
|
}
|
|
|
|
// If we weren't able to update our entity count, or we couldn't fit any entities, then
|
|
// we should discard our element and return a result of NONE
|
|
if (!successUpdateEntityCount || noEntitiesFit) {
|
|
packetData->discardLevel(elementLevel);
|
|
appendElementState = OctreeElement::NONE;
|
|
} else {
|
|
packetData->endLevel(elementLevel);
|
|
}
|
|
return appendElementState;
|
|
}
|
|
|
|
bool EntityTreeElement::containsEntityBounds(const EntityItem* entity) const {
|
|
return containsBounds(entity->getMaximumAACube());
|
|
}
|
|
|
|
bool EntityTreeElement::bestFitEntityBounds(const EntityItem* entity) const {
|
|
return bestFitBounds(entity->getMaximumAACube());
|
|
}
|
|
|
|
bool EntityTreeElement::containsBounds(const EntityItemProperties& properties) const {
|
|
return containsBounds(properties.getMaximumAACubeInTreeUnits());
|
|
}
|
|
|
|
bool EntityTreeElement::bestFitBounds(const EntityItemProperties& properties) const {
|
|
return bestFitBounds(properties.getMaximumAACubeInTreeUnits());
|
|
}
|
|
|
|
bool EntityTreeElement::containsBounds(const AACube& bounds) const {
|
|
return containsBounds(bounds.getMinimumPoint(), bounds.getMaximumPoint());
|
|
}
|
|
|
|
bool EntityTreeElement::bestFitBounds(const AACube& bounds) const {
|
|
return bestFitBounds(bounds.getMinimumPoint(), bounds.getMaximumPoint());
|
|
}
|
|
|
|
bool EntityTreeElement::containsBounds(const AABox& bounds) const {
|
|
return containsBounds(bounds.getMinimumPoint(), bounds.getMaximumPoint());
|
|
}
|
|
|
|
bool EntityTreeElement::bestFitBounds(const AABox& bounds) const {
|
|
return bestFitBounds(bounds.getMinimumPoint(), bounds.getMaximumPoint());
|
|
}
|
|
|
|
bool EntityTreeElement::containsBounds(const glm::vec3& minPoint, const glm::vec3& maxPoint) const {
|
|
glm::vec3 clampedMin = glm::clamp(minPoint, 0.0f, 1.0f);
|
|
glm::vec3 clampedMax = glm::clamp(maxPoint, 0.0f, 1.0f);
|
|
return _cube.contains(clampedMin) && _cube.contains(clampedMax);
|
|
}
|
|
|
|
bool EntityTreeElement::bestFitBounds(const glm::vec3& minPoint, const glm::vec3& maxPoint) const {
|
|
glm::vec3 clampedMin = glm::clamp(minPoint, 0.0f, 1.0f);
|
|
glm::vec3 clampedMax = glm::clamp(maxPoint, 0.0f, 1.0f);
|
|
|
|
if (_cube.contains(clampedMin) && _cube.contains(clampedMax)) {
|
|
|
|
// If our child would be smaller than our smallest reasonable element, then we are the best fit.
|
|
float childScale = _cube.getScale() / 2.0f;
|
|
if (childScale <= SMALLEST_REASONABLE_OCTREE_ELEMENT_SCALE) {
|
|
return true;
|
|
}
|
|
int childForMinimumPoint = getMyChildContainingPoint(clampedMin);
|
|
int childForMaximumPoint = getMyChildContainingPoint(clampedMax);
|
|
|
|
// If I contain both the minimum and maximum point, but two different children of mine
|
|
// contain those points, then I am the best fit for that entity
|
|
if (childForMinimumPoint != childForMaximumPoint) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool EntityTreeElement::findDetailedRayIntersection(const glm::vec3& origin, const glm::vec3& direction,
|
|
bool& keepSearching, OctreeElement*& element, float& distance, BoxFace& face,
|
|
void** intersectedObject) {
|
|
|
|
// only called if we do intersect our bounding cube, but find if we actually intersect with entities...
|
|
|
|
QList<EntityItem*>::iterator entityItr = _entityItems->begin();
|
|
QList<EntityItem*>::const_iterator entityEnd = _entityItems->end();
|
|
bool somethingIntersected = false;
|
|
while(entityItr != entityEnd) {
|
|
EntityItem* entity = (*entityItr);
|
|
|
|
AABox entityBox = entity->getAABox();
|
|
float localDistance;
|
|
BoxFace localFace;
|
|
|
|
// if the ray doesn't intersect with our cube, we can stop searching!
|
|
if (entityBox.findRayIntersection(origin, direction, localDistance, localFace)) {
|
|
|
|
// extents is the entity relative, scaled, centered extents of the entity
|
|
glm::mat4 rotation = glm::mat4_cast(entity->getRotation());
|
|
glm::mat4 translation = glm::translate(entity->getPosition());
|
|
glm::mat4 entityToWorldMatrix = translation * rotation;
|
|
glm::mat4 worldToEntityMatrix = glm::inverse(entityToWorldMatrix);
|
|
|
|
glm::vec3 dimensions = entity->getDimensions();
|
|
glm::vec3 registrationPoint = entity->getRegistrationPoint();
|
|
glm::vec3 corner = -(dimensions * registrationPoint);
|
|
|
|
AABox entityFrameBox(corner, dimensions);
|
|
|
|
glm::vec3 entityFrameOrigin = glm::vec3(worldToEntityMatrix * glm::vec4(origin, 1.0f));
|
|
glm::vec3 entityFrameDirection = glm::vec3(worldToEntityMatrix * glm::vec4(direction, 0.0f));
|
|
|
|
// we can use the AABox's ray intersection by mapping our origin and direction into the entity frame
|
|
// and testing intersection there.
|
|
if (entityFrameBox.findRayIntersection(entityFrameOrigin, entityFrameDirection, localDistance, localFace)) {
|
|
if (localDistance < distance) {
|
|
distance = localDistance;
|
|
face = localFace;
|
|
*intersectedObject = (void*)entity;
|
|
somethingIntersected = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
++entityItr;
|
|
}
|
|
return somethingIntersected;
|
|
}
|
|
|
|
// TODO: change this to use better bounding shape for entity than sphere
|
|
bool EntityTreeElement::findSpherePenetration(const glm::vec3& center, float radius,
|
|
glm::vec3& penetration, void** penetratedObject) const {
|
|
QList<EntityItem*>::iterator entityItr = _entityItems->begin();
|
|
QList<EntityItem*>::const_iterator entityEnd = _entityItems->end();
|
|
while(entityItr != entityEnd) {
|
|
EntityItem* entity = (*entityItr);
|
|
glm::vec3 entityCenter = entity->getPosition();
|
|
float entityRadius = entity->getRadius();
|
|
|
|
// don't penetrate yourself
|
|
if (entityCenter == center && entityRadius == radius) {
|
|
return false;
|
|
}
|
|
|
|
if (findSphereSpherePenetration(center, radius, entityCenter, entityRadius, penetration)) {
|
|
// return true on first valid entity penetration
|
|
*penetratedObject = (void*)(entity);
|
|
return true;
|
|
}
|
|
++entityItr;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool EntityTreeElement::findShapeCollisions(const Shape* shape, CollisionList& collisions) const {
|
|
bool atLeastOneCollision = false;
|
|
QList<EntityItem*>::iterator entityItr = _entityItems->begin();
|
|
QList<EntityItem*>::const_iterator entityEnd = _entityItems->end();
|
|
while(entityItr != entityEnd) {
|
|
EntityItem* entity = (*entityItr);
|
|
|
|
// entities that are set for ignore for collisions then don't consider them for collision
|
|
const Shape* otherCollisionShape = &entity->getCollisionShapeInMeters();
|
|
|
|
bool ignoreForCollisions = entity->getIgnoreForCollisions();
|
|
if (shape != otherCollisionShape && !ignoreForCollisions) {
|
|
if (ShapeCollider::collideShapes(shape, otherCollisionShape, collisions)) {
|
|
CollisionInfo* lastCollision = collisions.getLastCollision();
|
|
lastCollision->_extraData = entity;
|
|
atLeastOneCollision = true;
|
|
}
|
|
}
|
|
++entityItr;
|
|
}
|
|
return atLeastOneCollision;
|
|
}
|
|
|
|
void EntityTreeElement::updateEntityItemID(const EntityItemID& creatorTokenEntityID, const EntityItemID& knownIDEntityID) {
|
|
uint16_t numberOfEntities = _entityItems->size();
|
|
for (uint16_t i = 0; i < numberOfEntities; i++) {
|
|
EntityItem* thisEntity = (*_entityItems)[i];
|
|
|
|
EntityItemID thisEntityID = thisEntity->getEntityItemID();
|
|
|
|
if (thisEntityID == creatorTokenEntityID) {
|
|
thisEntity->setID(knownIDEntityID.id);
|
|
}
|
|
}
|
|
}
|
|
|
|
const EntityItem* EntityTreeElement::getClosestEntity(glm::vec3 position) const {
|
|
const EntityItem* closestEntity = NULL;
|
|
float closestEntityDistance = FLT_MAX;
|
|
uint16_t numberOfEntities = _entityItems->size();
|
|
for (uint16_t i = 0; i < numberOfEntities; i++) {
|
|
float distanceToEntity = glm::distance(position, (*_entityItems)[i]->getPosition());
|
|
if (distanceToEntity < closestEntityDistance) {
|
|
closestEntity = (*_entityItems)[i];
|
|
}
|
|
}
|
|
return closestEntity;
|
|
}
|
|
|
|
// TODO: change this to use better bounding shape for entity than sphere
|
|
void EntityTreeElement::getEntities(const glm::vec3& searchPosition, float searchRadius, QVector<const EntityItem*>& foundEntities) const {
|
|
uint16_t numberOfEntities = _entityItems->size();
|
|
for (uint16_t i = 0; i < numberOfEntities; i++) {
|
|
const EntityItem* entity = (*_entityItems)[i];
|
|
float distance = glm::length(entity->getPosition() - searchPosition);
|
|
if (distance < searchRadius + entity->getRadius()) {
|
|
foundEntities.push_back(entity);
|
|
}
|
|
}
|
|
}
|
|
|
|
// TODO: change this to use better bounding shape for entity than sphere
|
|
void EntityTreeElement::getEntities(const AACube& box, QVector<EntityItem*>& foundEntities) {
|
|
QList<EntityItem*>::iterator entityItr = _entityItems->begin();
|
|
QList<EntityItem*>::iterator entityEnd = _entityItems->end();
|
|
AACube entityCube;
|
|
while(entityItr != entityEnd) {
|
|
EntityItem* entity = (*entityItr);
|
|
float radius = entity->getRadius();
|
|
// NOTE: we actually do cube-cube collision queries here, which is sloppy but good enough for now
|
|
// TODO: decide whether to replace entityCube-cube query with sphere-cube (requires a square root
|
|
// but will be slightly more accurate).
|
|
entityCube.setBox(entity->getPosition() - glm::vec3(radius), 2.f * radius);
|
|
if (entityCube.touches(box)) {
|
|
foundEntities.push_back(entity);
|
|
}
|
|
++entityItr;
|
|
}
|
|
}
|
|
|
|
const EntityItem* EntityTreeElement::getEntityWithEntityItemID(const EntityItemID& id) const {
|
|
const EntityItem* foundEntity = NULL;
|
|
uint16_t numberOfEntities = _entityItems->size();
|
|
for (uint16_t i = 0; i < numberOfEntities; i++) {
|
|
if ((*_entityItems)[i]->getEntityItemID() == id) {
|
|
foundEntity = (*_entityItems)[i];
|
|
break;
|
|
}
|
|
}
|
|
return foundEntity;
|
|
}
|
|
|
|
EntityItem* EntityTreeElement::getEntityWithEntityItemID(const EntityItemID& id) {
|
|
EntityItem* foundEntity = NULL;
|
|
uint16_t numberOfEntities = _entityItems->size();
|
|
for (uint16_t i = 0; i < numberOfEntities; i++) {
|
|
if ((*_entityItems)[i]->getEntityItemID() == id) {
|
|
foundEntity = (*_entityItems)[i];
|
|
break;
|
|
}
|
|
}
|
|
return foundEntity;
|
|
}
|
|
|
|
void EntityTreeElement::cleanupEntities() {
|
|
uint16_t numberOfEntities = _entityItems->size();
|
|
for (uint16_t i = 0; i < numberOfEntities; i++) {
|
|
EntityItem* entity = (*_entityItems)[i];
|
|
delete entity;
|
|
}
|
|
_entityItems->clear();
|
|
}
|
|
|
|
bool EntityTreeElement::removeEntityWithEntityItemID(const EntityItemID& id) {
|
|
bool foundEntity = false;
|
|
uint16_t numberOfEntities = _entityItems->size();
|
|
for (uint16_t i = 0; i < numberOfEntities; i++) {
|
|
if ((*_entityItems)[i]->getEntityItemID() == id) {
|
|
foundEntity = true;
|
|
_entityItems->removeAt(i);
|
|
break;
|
|
}
|
|
}
|
|
return foundEntity;
|
|
}
|
|
|
|
bool EntityTreeElement::removeEntityItem(EntityItem* entity) {
|
|
return _entityItems->removeAll(entity) > 0;
|
|
}
|
|
|
|
|
|
// Things we want to accomplish as we read these entities from the data buffer.
|
|
//
|
|
// 1) correctly update the properties of the entity
|
|
// 2) add any new entities that didn't previously exist
|
|
//
|
|
// TODO: Do we also need to do this?
|
|
// 3) mark our tree as dirty down to the path of the previous location of the entity
|
|
// 4) mark our tree as dirty down to the path of the new location of the entity
|
|
//
|
|
// Since we're potentially reading several entities, we'd prefer to do all the moving around
|
|
// and dirty path marking in one pass.
|
|
int EntityTreeElement::readElementDataFromBuffer(const unsigned char* data, int bytesLeftToRead,
|
|
ReadBitstreamToTreeParams& args) {
|
|
|
|
// If we're the root, but this bitstream doesn't support root elements with data, then
|
|
// return without reading any bytes
|
|
if (this == _myTree->getRoot() && args.bitstreamVersion < VERSION_ROOT_ELEMENT_HAS_DATA) {
|
|
return 0;
|
|
}
|
|
|
|
const unsigned char* dataAt = data;
|
|
int bytesRead = 0;
|
|
uint16_t numberOfEntities = 0;
|
|
int expectedBytesPerEntity = EntityItem::expectedBytes();
|
|
|
|
if (bytesLeftToRead >= (int)sizeof(numberOfEntities)) {
|
|
// read our entities in....
|
|
numberOfEntities = *(uint16_t*)dataAt;
|
|
|
|
dataAt += sizeof(numberOfEntities);
|
|
bytesLeftToRead -= (int)sizeof(numberOfEntities);
|
|
bytesRead += sizeof(numberOfEntities);
|
|
|
|
if (bytesLeftToRead >= (int)(numberOfEntities * expectedBytesPerEntity)) {
|
|
for (uint16_t i = 0; i < numberOfEntities; i++) {
|
|
int bytesForThisEntity = 0;
|
|
EntityItemID entityItemID;
|
|
EntityItem* entityItem = NULL;
|
|
|
|
// Old model files don't have UUIDs in them. So we don't want to try to read those IDs from the stream.
|
|
// Since this can only happen on loading an old file, we can safely treat these as new entity cases,
|
|
// which will correctly handle the case of creating models and letting them parse the old format.
|
|
if (args.bitstreamVersion >= VERSION_ENTITIES_SUPPORT_SPLIT_MTU) {
|
|
entityItemID = EntityItemID::readEntityItemIDFromBuffer(dataAt, bytesLeftToRead);
|
|
entityItem = _myTree->findEntityByEntityItemID(entityItemID);
|
|
}
|
|
|
|
// If the item already exists in our tree, we want do the following...
|
|
// 1) allow the existing item to read from the databuffer
|
|
// 2) check to see if after reading the item, the containing element is still correct, fix it if needed
|
|
//
|
|
// TODO: Do we need to also do this?
|
|
// 3) remember the old cube for the entity so we can mark it as dirty
|
|
if (entityItem) {
|
|
bool bestFitBefore = bestFitEntityBounds(entityItem);
|
|
EntityTreeElement* currentContainingElement = _myTree->getContainingElement(entityItemID);
|
|
EntityItem::SimulationState oldState = entityItem->getSimulationState();
|
|
bytesForThisEntity = entityItem->readEntityDataFromBuffer(dataAt, bytesLeftToRead, args);
|
|
EntityItem::SimulationState newState = entityItem->getSimulationState();
|
|
if (oldState != newState) {
|
|
_myTree->changeEntityState(entityItem, oldState, newState);
|
|
}
|
|
bool bestFitAfter = bestFitEntityBounds(entityItem);
|
|
|
|
if (bestFitBefore != bestFitAfter) {
|
|
// This is the case where the entity existed, and is in some element in our tree...
|
|
if (!bestFitBefore && bestFitAfter) {
|
|
// This is the case where the entity existed, and is in some element in our tree...
|
|
if (currentContainingElement != this) {
|
|
currentContainingElement->removeEntityItem(entityItem);
|
|
addEntityItem(entityItem);
|
|
_myTree->setContainingElement(entityItemID, this);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
entityItem = EntityTypes::constructEntityItem(dataAt, bytesLeftToRead, args);
|
|
if (entityItem) {
|
|
bytesForThisEntity = entityItem->readEntityDataFromBuffer(dataAt, bytesLeftToRead, args);
|
|
addEntityItem(entityItem); // add this new entity to this elements entities
|
|
entityItemID = entityItem->getEntityItemID();
|
|
_myTree->setContainingElement(entityItemID, this);
|
|
_myTree->emitAddingEntity(entityItemID); // we just added an entity
|
|
EntityItem::SimulationState newState = entityItem->getSimulationState();
|
|
_myTree->changeEntityState(entityItem, EntityItem::Static, newState);
|
|
}
|
|
}
|
|
// Move the buffer forward to read more entities
|
|
dataAt += bytesForThisEntity;
|
|
bytesLeftToRead -= bytesForThisEntity;
|
|
bytesRead += bytesForThisEntity;
|
|
}
|
|
}
|
|
}
|
|
|
|
return bytesRead;
|
|
}
|
|
|
|
void EntityTreeElement::addEntityItem(EntityItem* entity) {
|
|
_entityItems->push_back(entity);
|
|
}
|
|
|
|
// will average a "common reduced LOD view" from the the child elements...
|
|
void EntityTreeElement::calculateAverageFromChildren() {
|
|
// nothing to do here yet...
|
|
}
|
|
|
|
// will detect if children are leaves AND collapsable into the parent node
|
|
// and in that case will collapse children and make this node
|
|
// a leaf, returns TRUE if all the leaves are collapsed into a
|
|
// single node
|
|
bool EntityTreeElement::collapseChildren() {
|
|
// nothing to do here yet...
|
|
return false;
|
|
}
|
|
|
|
bool EntityTreeElement::pruneChildren() {
|
|
bool somethingPruned = false;
|
|
for (int childIndex = 0; childIndex < NUMBER_OF_CHILDREN; childIndex++) {
|
|
EntityTreeElement* child = getChildAtIndex(childIndex);
|
|
|
|
// if my child is a leaf, but has no entities, then it's safe to delete my child
|
|
if (child && child->isLeaf() && !child->hasEntities()) {
|
|
deleteChildAtIndex(childIndex);
|
|
somethingPruned = true;
|
|
}
|
|
}
|
|
return somethingPruned;
|
|
}
|
|
|
|
|
|
void EntityTreeElement::debugDump() {
|
|
qDebug() << "EntityTreeElement...";
|
|
AACube temp = getAACube();
|
|
temp.scale((float)TREE_SCALE);
|
|
qDebug() << " cube:" << temp;
|
|
qDebug() << " has child elements:" << getChildCount();
|
|
if (_entityItems->size()) {
|
|
qDebug() << " has entities:" << _entityItems->size();
|
|
qDebug() << "--------------------------------------------------";
|
|
for (uint16_t i = 0; i < _entityItems->size(); i++) {
|
|
EntityItem* entity = (*_entityItems)[i];
|
|
entity->debugDump();
|
|
}
|
|
qDebug() << "--------------------------------------------------";
|
|
} else {
|
|
qDebug() << " NO entities!";
|
|
}
|
|
}
|
|
|