1) Added createSphere() to VoxelSystem to create a sphere

2) Added pointToVoxel() to SharedUtils, this will give you a voxel code
   given x,y,z,s,r,g,b
3) Added '.' keyboard interface to create a random sphere in the local
   voxel system
This commit is contained in:
ZappoMan 2013-03-24 10:06:43 -07:00
parent 8ecc0d53ad
commit ef8694dd60
5 changed files with 297 additions and 1 deletions

View file

@ -98,6 +98,88 @@ void VoxelSystem::loadVoxelsFile(char* fileName) {
voxelsToRender = (voxelsRendered > 0);
}
//////////////////////////////////////////////////////////////////////////////////////////
// Method: VoxelSystem::createSphere()
// Description: Creates a sphere of voxels in the local system at a given location/radius
// To Do: Move this function someplace better? I put it here because we need a
// mechanism to tell the system to redraw it's arrays after voxels are done
// being added. This is a concept mostly only understood by VoxelSystem.
// Complaints: Brad :)
void VoxelSystem::createSphere(float r,float xc, float yc, float zc, float s, bool solid)
{
// Psuedocode for creating a sphere:
//
// for (theta from 0 to 2pi):
// for (phi from 0 to pi):
// x = xc+r*cos(theta)*sin(phi)
// y = yc+r*sin(theta)*sin(phi)
// z = zc+r*cos(phi)
int t=0; // total points
// We want to make sure that as we "sweep" through our angles
// we use a delta angle that's small enough to not skip any voxels
// we can calculate theta from our desired arc length
//
// lenArc = ndeg/360deg * 2pi*R
// lenArc = theta/2pi * 2pi*R
// lenArc = theta*R
// theta = lenArc/R
// theta = g/r
float angleDelta = (s/r);
// assume solid for now
float ri = 0.0;
if (!solid)
{
ri=r; // just the outer surface
}
// If you also iterate form the interior of the sphere to the radius, makeing
// larger and larger sphere's you'd end up with a solid sphere. And lots of voxels!
for (; ri <= r; ri+=s)
{
for (float theta=0.0; theta <= 2*M_PI; theta += angleDelta)
{
for (float phi=0.0; phi <= M_PI; phi += angleDelta)
{
t++; // total voxels
float x = xc+r*cos(theta)*sin(phi);
float y = yc+r*sin(theta)*sin(phi);
float z = zc+r*cos(phi);
/*
std::cout << " r=" << r;
std::cout << " theta=" << theta;
std::cout << " phi=" << phi;
std::cout << " x=" << x;
std::cout << " y=" << y;
std::cout << " z=" << z;
std::cout << " t=" << t;
std::cout << std::endl;
*/
// random color data
unsigned char red = randomColorValue(65);
unsigned char green = randomColorValue(65);
unsigned char blue = randomColorValue(65);
unsigned char* voxelData = pointToVoxel(x,y,z,s,red,green,blue);
tree->readCodeColorBufferToTree(voxelData);
delete voxelData;
}
}
}
// reset the verticesEndPointer so we're writing to the beginning of the array
verticesEndPointer = verticesArray;
// call recursive function to populate in memory arrays
// it will return the number of voxels added
voxelsRendered = treeToArrays(tree->rootNode);
// set the boolean if there are any voxels to be rendered so we re-fill the VBOs
voxelsToRender = (voxelsRendered > 0);
}
void VoxelSystem::parseData(void *data, int size) {
// output the bits received from the voxel server
unsigned char *voxelData = (unsigned char *) data + 1;
@ -243,3 +325,4 @@ void VoxelSystem::simulate(float deltaTime) {
}

View file

@ -34,7 +34,7 @@ public:
void setVoxelsRendered(int v) {voxelsRendered = v;};
int getVoxelsRendered() {return voxelsRendered;};
void loadVoxelsFile(char* fileName);
void createSphere(float r,float xc, float yc, float zc, float s, bool solid);
private:
int voxelsRendered;
VoxelTree *tree;

View file

@ -692,6 +692,45 @@ void display(void)
framecount++;
}
void testPointToVoxel()
{
float y=0;
float z=0;
float s=0.1;
for (float x=0; x<=1; x+= 0.05)
{
std::cout << " x=" << x << " ";
unsigned char red = 200; //randomColorValue(65);
unsigned char green = 200; //randomColorValue(65);
unsigned char blue = 200; //randomColorValue(65);
unsigned char* voxelCode = pointToVoxel(x, y, z, s,red,green,blue);
printVoxelCode(voxelCode);
delete voxelCode;
std::cout << std::endl;
}
}
void addRandomSphere()
{
float r = randFloatInRange(0.05,0.1);
float xc = randFloatInRange(r,(1-r));
float yc = randFloatInRange(r,(1-r));
float zc = randFloatInRange(r,(1-r));
float s = 0.002; // size of voxels to make up surface of sphere
bool solid = false;
printf("random sphere\n");
printf("radius=%f\n",r);
printf("xc=%f\n",xc);
printf("yc=%f\n",yc);
printf("zc=%f\n",zc);
voxels.createSphere(r,xc,yc,zc,s,solid);
}
const float KEYBOARD_YAW_RATE = 0.8;
const float KEYBOARD_STRAFE_RATE = 0.03;
const float KEYBOARD_FLY_RATE = 0.08;
@ -766,6 +805,13 @@ void key(unsigned char k, int x, int y)
{
myHead.SetNewHeadTarget((randFloat()-0.5)*20.0, (randFloat()-0.5)*20.0);
}
// press the . key to get a new random sphere of voxels added
if (k == '.')
{
addRandomSphere();
//testPointToVoxel();
}
}
//

View file

@ -28,6 +28,10 @@ float randFloat () {
return (rand() % 10000)/10000.f;
}
float randFloatInRange (float min,float max) {
return min + ((rand() % 10000)/10000.f * (max-min));
}
unsigned char randomColorValue(int miniumum) {
return miniumum + (rand() % (255 - miniumum));
}
@ -104,3 +108,162 @@ bool cmdOptionExists(char** begin, char** end, const std::string& option)
{
return std::find(begin, end, option) != end;
}
//////////////////////////////////////////////////////////////////////////////////////////
// Function: pointToVoxel()
// Description: Given a universal point with location x,y,z this will return the voxel
// voxel code corresponding to the closest voxel which encloses a cube with
// lower corners at x,y,z, having side of length S.
// The input values x,y,z range 0.0 <= v < 1.0
// TO DO: This code is not very DRY. It should be cleaned up to be DRYer.
// IMPORTANT: The voxel is returned to you a buffer which you MUST delete when you are
// done with it.
// Usage:
// unsigned char* voxelData = pointToVoxel(x,y,z,s,red,green,blue);
// tree->readCodeColorBufferToTree(voxelData);
// delete voxelData;
//
// Complaints: Brad :)
unsigned char* pointToVoxel(float x, float y, float z, float s, unsigned char r, unsigned char g, unsigned char b ) {
float xTest, yTest, zTest, sTest;
xTest = yTest = zTest = sTest = 0.5;
// First determine the voxelSize that will properly encode a
// voxel of size S.
int voxelSizeInBits = 0;
while (sTest > s) {
sTest /= 2.0;
voxelSizeInBits+=3;
}
unsigned int voxelSizeInBytes = (voxelSizeInBits/8)+1;
unsigned int voxelSizeInOctets = (voxelSizeInBits/3);
unsigned int voxelBufferSize = voxelSizeInBytes+1+3; // 1 for size, 3 for color
// allocate our resulting buffer
unsigned char* voxelOut = new unsigned char[voxelBufferSize];
// first byte of buffer is always our size in octets
voxelOut[0]=voxelSizeInOctets;
sTest = 0.5; // reset sTest so we can do this again.
unsigned char byte = 0; // we will be adding coding bits here
int bitInByteNDX = 0; // keep track of where we are in byte as we go
int byteNDX = 1; // keep track of where we are in buffer of bytes as we go
int octetsDone = 0;
// Now we actually fill out the voxel code
while (octetsDone < voxelSizeInOctets) {
if (x > xTest) {
//<write 1 bit>
byte = (byte << 1) | true;
xTest += sTest/2.0;
}
else {
//<write 0 bit;>
byte = (byte << 1) | false;
xTest -= sTest/2.0;
}
bitInByteNDX++;
// If we've reached the last bit of the byte, then we want to copy this byte
// into our buffer. And get ready to start on a new byte
if (bitInByteNDX > 7)
{
voxelOut[byteNDX]=byte;
byteNDX++;
bitInByteNDX=0;
byte=0;
}
if (y > yTest) {
//<write 1 bit>
byte = (byte << 1) | true;
yTest += sTest/2.0;
}
else {
//<write 0 bit;>
byte = (byte << 1) | false;
yTest -= sTest/2.0;
}
bitInByteNDX++;
// If we've reached the last bit of the byte, then we want to copy this byte
// into our buffer. And get ready to start on a new byte
if (bitInByteNDX > 7)
{
voxelOut[byteNDX]=byte;
byteNDX++;
bitInByteNDX=0;
byte=0;
}
if (z > zTest) {
//<write 1 bit>
byte = (byte << 1) | true;
zTest += sTest/2.0;
}
else {
//<write 0 bit;>
byte = (byte << 1) | false;
zTest -= sTest/2.0;
}
bitInByteNDX++;
// If we've reached the last bit of the byte, then we want to copy this byte
// into our buffer. And get ready to start on a new byte
if (bitInByteNDX > 7)
{
voxelOut[byteNDX]=byte;
byteNDX++;
bitInByteNDX=0;
byte=0;
}
octetsDone++;
sTest /= 2.0;
}
// If we've got here, and we didn't fill the last byte, we need to zero pad this
// byte before we copy it into our buffer.
if (bitInByteNDX > 0 && bitInByteNDX < 7)
{
// Pad the last byte
while (bitInByteNDX <= 7)
{
byte = (byte << 1) | false;
bitInByteNDX++;
}
// Copy it into our output buffer
voxelOut[byteNDX]=byte;
byteNDX++;
}
// copy color data
voxelOut[byteNDX]=r;
voxelOut[byteNDX+1]=g;
voxelOut[byteNDX+2]=b;
return voxelOut;
}
void printVoxelCode(unsigned char* voxelCode)
{
unsigned char octets = voxelCode[0];
unsigned int voxelSizeInBits = octets*3;
unsigned int voxelSizeInBytes = (voxelSizeInBits/8)+1;
unsigned int voxelSizeInOctets = (voxelSizeInBits/3);
unsigned int voxelBufferSize = voxelSizeInBytes+1+3; // 1 for size, 3 for color
printf("octets=%d\n",octets);
printf("voxelSizeInBits=%d\n",voxelSizeInBits);
printf("voxelSizeInBytes=%d\n",voxelSizeInBytes);
printf("voxelSizeInOctets=%d\n",voxelSizeInOctets);
printf("voxelBufferSize=%d\n",voxelBufferSize);
for(int i=0;i<voxelBufferSize;i++)
{
printf("i=%d ",i);
outputBits(voxelCode[i]);
}
}

View file

@ -22,10 +22,12 @@ double usecTimestamp(timeval *time);
double usecTimestampNow();
float randFloat();
float randFloatInRange (float min,float max);
unsigned char randomColorValue(int minimum);
bool randomBoolean();
void outputBits(unsigned char byte);
void printVoxelCode(unsigned char* voxelCode);
int numberOfOnes(unsigned char byte);
bool oneAtBit(unsigned char byte, int bitIndex);
@ -34,4 +36,6 @@ void switchToResourcesIfRequired();
char* getCmdOption(char ** begin, char ** end, const std::string& option);
bool cmdOptionExists(char** begin, char** end, const std::string& option);
unsigned char* pointToVoxel(float x, float y, float z, float s, unsigned char r, unsigned char g, unsigned char b );
#endif /* defined(__hifi__SharedUtil__) */