AACube vs Sphere and Capsule collision tests

Sphere is unit tested.
Also removed the shape collision query against Octree
This commit is contained in:
Andrew Meadows 2014-08-27 12:09:41 -07:00
parent 681c526fe1
commit c6253bb51a
7 changed files with 456 additions and 361 deletions

View file

@ -1564,6 +1564,7 @@ void MyAvatar::updateCollisionWithEnvironment(float deltaTime, float radius) {
static CollisionList myCollisions(64);
void MyAvatar::updateCollisionWithVoxels(float deltaTime, float radius) {
/* TODO: Andrew to reimplement this
const float MAX_VOXEL_COLLISION_SPEED = 100.0f;
float speed = glm::length(_velocity);
if (speed > MAX_VOXEL_COLLISION_SPEED) {
@ -1670,6 +1671,7 @@ void MyAvatar::updateCollisionWithVoxels(float deltaTime, float radius) {
//updateCollisionSound(myCollisions[0]->_penetration, deltaTime, VOXEL_COLLISION_FREQUENCY);
}
_trapDuration = isTrapped ? _trapDuration + deltaTime : 0.0f;
*/
}
void MyAvatar::applyHardCollision(const glm::vec3& penetration, float elasticity, float damping) {

View file

@ -751,6 +751,7 @@ bool findCapsulePenetrationOp(OctreeElement* element, void* extraData) {
return false;
}
/* TODO: Andrew to reimplement or purge this
bool findShapeCollisionsOp(OctreeElement* element, void* extraData) {
ShapeArgs* args = static_cast<ShapeArgs*>(extraData);
@ -771,6 +772,7 @@ bool findShapeCollisionsOp(OctreeElement* element, void* extraData) {
}
return false;
}
*/
bool Octree::findCapsulePenetration(const glm::vec3& start, const glm::vec3& end, float radius,
glm::vec3& penetration, Octree::lockType lockType, bool* accurateResult) {
@ -809,6 +811,7 @@ bool Octree::findCapsulePenetration(const glm::vec3& start, const glm::vec3& end
return args.found;
}
/* TODO: Andrew to reimplement or purge this
bool Octree::findShapeCollisions(const Shape* shape, CollisionList& collisions,
Octree::lockType lockType, bool* accurateResult) {
@ -839,6 +842,7 @@ bool Octree::findShapeCollisions(const Shape* shape, CollisionList& collisions,
}
return args.found;
}
*/
class GetElementEnclosingArgs {
public:

View file

@ -277,8 +277,9 @@ public:
bool findCapsulePenetration(const glm::vec3& start, const glm::vec3& end, float radius, glm::vec3& penetration,
Octree::lockType lockType = Octree::TryLock, bool* accurateResult = NULL);
bool findShapeCollisions(const Shape* shape, CollisionList& collisions,
Octree::lockType = Octree::TryLock, bool* accurateResult = NULL);
// TODO: Andrew to reimplement or purge this
// bool findShapeCollisions(const Shape* shape, CollisionList& collisions,
// Octree::lockType = Octree::TryLock, bool* accurateResult = NULL);
OctreeElement* getElementEnclosingPoint(const glm::vec3& point,
Octree::lockType lockType = Octree::TryLock, bool* accurateResult = NULL);

View file

@ -9,8 +9,6 @@
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include <iostream>
#include <glm/gtx/norm.hpp>
#include "ShapeCollider.h"
@ -127,29 +125,6 @@ bool collideShapesWithShapes(const QVector<Shape*>& shapesA, const QVector<Shape
return collided;
}
bool collideShapeWithAACube(const Shape* shapeA, const glm::vec3& cubeCenter, float cubeSide, CollisionList& collisions) {
Shape::Type typeA = shapeA->getType();
if (typeA == SPHERE_SHAPE) {
return sphereVsAACube(static_cast<const SphereShape*>(shapeA), cubeCenter, cubeSide, collisions);
} else if (typeA == CAPSULE_SHAPE) {
return capsuleVsAACube(static_cast<const CapsuleShape*>(shapeA), cubeCenter, cubeSide, collisions);
} else if (typeA == LIST_SHAPE) {
const ListShape* listA = static_cast<const ListShape*>(shapeA);
bool touching = false;
for (int i = 0; i < listA->size() && !collisions.isFull(); ++i) {
const Shape* subShape = listA->getSubShape(i);
int subType = subShape->getType();
if (subType == SPHERE_SHAPE) {
touching = sphereVsAACube(static_cast<const SphereShape*>(subShape), cubeCenter, cubeSide, collisions) || touching;
} else if (subType == CAPSULE_SHAPE) {
touching = capsuleVsAACube(static_cast<const CapsuleShape*>(subShape), cubeCenter, cubeSide, collisions) || touching;
}
}
return touching;
}
return false;
}
bool sphereVsSphere(const Shape* shapeA, const Shape* shapeB, CollisionList& collisions) {
const SphereShape* sphereA = static_cast<const SphereShape*>(shapeA);
const SphereShape* sphereB = static_cast<const SphereShape*>(shapeB);
@ -536,28 +511,24 @@ bool planeVsPlane(const Shape* shapeA, const Shape* shapeB, CollisionList& colli
return false;
}
bool sphereVsAACube(const Shape* shapeA, const Shape* shapeB, CollisionList& collisions) {
// helper function
CollisionInfo* sphereVsAACubeHelper(const glm::vec3& sphereCenter, float sphereRadius, const glm::vec3& cubeCenter,
float cubeSide, CollisionList& collisions) {
// sphere is A
// cube is B
// BA = B - A = from center of A to center of B
const SphereShape* sphereA = static_cast<const SphereShape*>(shapeA);
const AACubeShape* cubeB = static_cast<const AACubeShape*>(shapeB);
float halfCubeSide = 0.5f * cubeB->getScale();
float sphereRadius = sphereA->getRadius();
glm::vec3 sphereCenter = shapeA->getTranslation();
glm::vec3 cubeCenter = shapeB->getTranslation();
float halfCubeSide = 0.5f * cubeSide;
glm::vec3 BA = cubeCenter - sphereCenter;
float distance = glm::length(BA);
if (distance > EPSILON) {
float maxBA = glm::max(glm::max(glm::abs(BA.x), glm::abs(BA.y)), glm::abs(BA.z));
if (maxBA > halfCubeSide + sphereRadius) {
// sphere misses cube entirely
return false;
return NULL;
}
CollisionInfo* collision = collisions.getNewCollision();
if (!collision) {
return false;
return NULL;
}
if (maxBA > halfCubeSide) {
// sphere hits cube but its center is outside cube
@ -590,7 +561,7 @@ bool sphereVsAACube(const Shape* shapeA, const Shape* shapeB, CollisionList& col
lengthDirection = glm::length(direction);
} else if (lengthDirection > sphereRadius) {
collisions.deleteLastCollision();
return false;
return NULL;
}
direction /= lengthDirection;
@ -607,12 +578,14 @@ bool sphereVsAACube(const Shape* shapeA, const Shape* shapeB, CollisionList& col
direction /= lengthDirection;
// compute collision details
collision->_floatData = cubeSide;
collision->_vecData = cubeCenter;
collision->_penetration = (halfCubeSide * lengthDirection + sphereRadius - maxBA * glm::dot(BA, direction)) * direction;
collision->_contactPoint = sphereCenter + sphereRadius * direction;
}
collision->_shapeA = shapeA;
collision->_shapeB = shapeB;
return true;
collision->_shapeA = NULL;
collision->_shapeB = NULL;
return collision;
} else if (sphereRadius + halfCubeSide > distance) {
// NOTE: for cocentric approximation we collide sphere and cube as two spheres which means
// this algorithm will probably be wrong when both sphere and cube are very small (both ~EPSILON)
@ -622,43 +595,145 @@ bool sphereVsAACube(const Shape* shapeA, const Shape* shapeB, CollisionList& col
collision->_penetration = (sphereRadius + halfCubeSide) * glm::vec3(0.0f, -1.0f, 0.0f);
// contactPoint is on surface of A
collision->_contactPoint = sphereCenter + collision->_penetration;
collision->_shapeA = shapeA;
collision->_shapeB = shapeB;
return true;
collision->_shapeA = NULL;
collision->_shapeB = NULL;
return collision;
}
}
return NULL;
}
bool sphereVsAACube(const Shape* shapeA, const Shape* shapeB, CollisionList& collisions) {
// BA = B - A = from center of A to center of B
const SphereShape* sphereA = static_cast<const SphereShape*>(shapeA);
const AACubeShape* cubeB = static_cast<const AACubeShape*>(shapeB);
CollisionInfo* collision = sphereVsAACubeHelper( sphereA->getTranslation(), sphereA->getRadius(),
cubeB->getTranslation(), cubeB->getScale(), collisions);
if (collision) {
collision->_shapeA = shapeA;
collision->_shapeB = shapeB;
return true;
}
return false;
}
glm::vec3 cubeNormals[3] = { glm::vec3(1.0f, 0.0f, 0.0f), glm::vec3(0.0f, 1.0f, 0.0f), glm::vec3(0.0f, 0.0f, 1.0f) };
// the wallIndices is a sequence of pairs that represent the OTHER directions for each cube face,
// hence the first pair is (1, 2) because the OTHER faces for xFace are (yFace, zFace) = (1, 2)
int wallIndices[] = { 1, 2, 0, 2, 0, 1 };
bool capsuleVsAACube(const Shape* shapeA, const Shape* shapeB, CollisionList& collisions) {
/*
const CapsuleShape* capsuleA = static_cast<const CapsuleShape*>(shapeA);
const AACubeShape* cubeB = static_cast<const AACubeShape*>(shapeB);
// find nearest approach of capsule line segment to cube center
// use nearest approach to find approximate point on cube surface
// find point on cube surface closest to capsule line segment
// collide like point inside sphere
glm::vec3 capsuleAxis;
// find nearest approach of capsule's line segment to cube's center
glm::vec3 capsuleAxis;
capsuleA->computeNormalizedAxis(capsuleAxis);
glm::vec3 cubeCenter = shapeB->getTranslation();
float offset = glm::dot(cubeCenter - capsuleA->getTranslation(), capsuleAxis);
float halfHeight = capsuleA->getHalfHeight();
if (offset > halfHeight) {
offset = halfHeight;
} else if (offset < -halfHeight) {
offset = -halfHeight;
glm::vec3 cubeCenter = cubeB->getTranslation();
glm::vec3 BA = cubeCenter - capsuleA->getTranslation();
float axialOffset = glm::dot(capsuleAxis, BA);
if (fabsf(axialOffset) > halfHeight) {
axialOffset = (axialOffset < 0.0f) ? -halfHeight : halfHeight;
}
glm::vec3 nearestApproach = axialOffset * capsuleAxis;
// transform nearestApproach into cube-relative frame
nearestApproach -= cubeCenter;
// determine the face of nearest approach
glm::vec3 signs = glm::sign(nearestApproach);
int faceIndex = 0;
glm::vec3 faceNormal(signs.x, 0.0f, 0.0f);
float maxApproach = fabsf(nearestApproach.x);
if (maxApproach < fabsf(nearestApproach.y)) {
maxApproach = fabsf(nearestApproach.y);
faceIndex = 1;
faceNormal = glm::vec3(0.0f, signs.y, 0.0f);
}
if (maxApproach < fabsf(nearestApproach.z)) {
maxApproach = fabsf(nearestApproach.z);
faceIndex = 2;
faceNormal = glm::vec3(0.0f, 0.0f, signs.z);
}
// Revisualize the capsule as a startPoint and an axis that points toward the cube face.
// We raytrace forward into the four planes that neigbhor the face to find the furthest
// point along the capsule's axis that might hit face.
glm::vec3 capsuleStart;
if (glm::dot(capsuleAxis, faceNormal) < 0.0f) {
capsuleA->getStartPoint(capsuleStart);
} else {
// NOTE: we want dot(capsuleAxis, faceNormal) to be negative which simplifies some
// logic below, so we pretend the end is the start thereby reversing its axis.
capsuleA->getEndPoint(capsuleStart);
capsuleAxis *= -1.0f;
}
// translate into cube-relative frame
capsuleStart -= cubeCenter;
float capsuleLength = 2.0f * halfHeight;
float halfCubeSide = 0.5f * cubeB->getScale();
float capsuleRadius = capsuleA->getRadius();
// Loop over the directions that are NOT parallel to face (there are two of them).
// For each direction we'll raytrace along capsuleAxis to find point impact
// on the furthest face and clamp it to remain on the capsule's line segment
float distances[2] = { 0, capsuleLength};
int numCompleteMisses = 0;
for (int i = 0; i < 2; ++i) {
int wallIndex = wallIndices[2 * faceIndex + i];
// each direction has two walls: positive and negative
for (float wallSign = -1.0f; wallSign < 2.0f; wallSign += 2.0f) {
glm::vec3 wallNormal = wallSign * cubeNormals[wallIndex];
float axisDotWall = glm::dot(capsuleAxis, wallNormal);
if (axisDotWall > EPSILON) {
float distance = (halfCubeSide + glm::dot(capsuleStart, wallNormal)) / axisDotWall;
distances[i] = glm::clamp(distance, 0.0f, capsuleLength);
if (distance == distances[i]) {
// the wall truncated the capsule which means there is a possibility that the capusule
// actually collides against the edge of the face, so we check for that case now
glm::vec3 impact = capsuleStart + distance * capsuleAxis;
float depth = glm::dot(impact, faceNormal) - halfCubeSide;
if (depth > 0.0f) {
if (depth < capsuleRadius) {
// need to recast against the diagonal plane: wall rotated away from the face
glm::vec3 diagonalNormal = INV_SQUARE_ROOT_OF_2 * (wallNormal - faceNormal);
distances[i] = glm::min(glm::dot(capsuleStart, diagonalNormal), 0.0f);
} else {
// capsule misses this wall by more than capsuleRadius
++numCompleteMisses;
}
}
}
// there can't be more than one hit for any direction so we break
break;
}
}
}
if (numCompleteMisses == 2) {
return false;
}
// chose the point that produces the deepest penetration against face
glm::vec3 point0 = capsuleStart + distances[0] * capsuleAxis;
glm::vec3 point1 = capsuleStart + distances[1] * capsuleAxis;
if (glm::dot(point0, faceNormal) > glm::dot(point1, faceNormal)) {
point0 = point1;
}
// move back into real frame
point0 += cubeCenter;
// collide like a sphere at point0 with capsuleRadius
CollisionInfo* collision = sphereVsAACubeHelper(point0, capsuleRadius,
cubeCenter, 2.0f * halfCubeSide, collisions);
if (collision) {
// we hit! so store back pointers to the shapes
collision->_shapeA = shapeA;
collision->_shapeB = shapeB;
return true;
}
glm::vec3 BA = cubeCenter - sphereCenter;
glm::vec3 nearestApproach = capsuleA->getTranslation() + offset * capsuleAxis;
// collide nearest approach like a sphere at that point
return sphereVsAACube(nearestApproach, capsuleA->getRadius(), cubeCenter, cubeSide, collisions);
*/
return false;
}
@ -707,103 +782,6 @@ bool listVsList(const Shape* shapeA, const Shape* shapeB, CollisionList& collisi
return touching;
}
// helper function
bool sphereVsAACube(const glm::vec3& sphereCenter, float sphereRadius, const glm::vec3& cubeCenter,
float cubeSide, CollisionList& collisions) {
// sphere is A
// cube is B
// BA = B - A = from center of A to center of B
float halfCubeSide = 0.5f * cubeSide;
glm::vec3 BA = cubeCenter - sphereCenter;
float distance = glm::length(BA);
if (distance > EPSILON) {
float maxBA = glm::max(glm::max(glm::abs(BA.x), glm::abs(BA.y)), glm::abs(BA.z));
if (maxBA > halfCubeSide + sphereRadius) {
// sphere misses cube entirely
return false;
}
CollisionInfo* collision = collisions.getNewCollision();
if (!collision) {
return false;
}
if (maxBA > halfCubeSide) {
// sphere hits cube but its center is outside cube
// compute contact anti-pole on cube (in cube frame)
glm::vec3 cubeContact = glm::abs(BA);
if (cubeContact.x > halfCubeSide) {
cubeContact.x = halfCubeSide;
}
if (cubeContact.y > halfCubeSide) {
cubeContact.y = halfCubeSide;
}
if (cubeContact.z > halfCubeSide) {
cubeContact.z = halfCubeSide;
}
glm::vec3 signs = glm::sign(BA);
cubeContact.x *= signs.x;
cubeContact.y *= signs.y;
cubeContact.z *= signs.z;
// compute penetration direction
glm::vec3 direction = BA - cubeContact;
float lengthDirection = glm::length(direction);
if (lengthDirection < EPSILON) {
// sphereCenter is touching cube surface, so we can't use the difference between those two
// points to compute the penetration direction. Instead we use the unitary components of
// cubeContact.
direction = cubeContact / halfCubeSide;
glm::modf(BA, direction);
lengthDirection = glm::length(direction);
} else if (lengthDirection > sphereRadius) {
collisions.deleteLastCollision();
return false;
}
direction /= lengthDirection;
// compute collision details
collision->_contactPoint = sphereCenter + sphereRadius * direction;
collision->_penetration = sphereRadius * direction - (BA - cubeContact);
} else {
// sphere center is inside cube
// --> push out nearest face
glm::vec3 direction;
BA /= maxBA;
glm::modf(BA, direction);
float lengthDirection = glm::length(direction);
direction /= lengthDirection;
// compute collision details
collision->_floatData = cubeSide;
collision->_vecData = cubeCenter;
collision->_penetration = (halfCubeSide * lengthDirection + sphereRadius - maxBA * glm::dot(BA, direction)) * direction;
collision->_contactPoint = sphereCenter + sphereRadius * direction;
}
collision->_floatData = cubeSide;
collision->_vecData = cubeCenter;
collision->_shapeA = NULL;
collision->_shapeB = NULL;
return true;
} else if (sphereRadius + halfCubeSide > distance) {
// NOTE: for cocentric approximation we collide sphere and cube as two spheres which means
// this algorithm will probably be wrong when both sphere and cube are very small (both ~EPSILON)
CollisionInfo* collision = collisions.getNewCollision();
if (collision) {
// the penetration and contactPoint are undefined, so we pick a penetration direction (-yAxis)
collision->_penetration = (sphereRadius + halfCubeSide) * glm::vec3(0.0f, -1.0f, 0.0f);
// contactPoint is on surface of A
collision->_contactPoint = sphereCenter + collision->_penetration;
collision->_floatData = cubeSide;
collision->_vecData = cubeCenter;
collision->_shapeA = NULL;
collision->_shapeB = NULL;
return true;
}
}
return false;
}
// helper function
/* KEEP THIS CODE -- this is how to collide the cube with stark face normals (no rounding).
* We might want to use this code later for sealing boundaries between adjacent voxels.
@ -856,26 +834,6 @@ bool sphereAACube_StarkAngles(const glm::vec3& sphereCenter, float sphereRadius,
}
*/
bool sphereVsAACube(const SphereShape* sphereA, const glm::vec3& cubeCenter, float cubeSide, CollisionList& collisions) {
return sphereVsAACube(sphereA->getTranslation(), sphereA->getRadius(), cubeCenter, cubeSide, collisions);
}
bool capsuleVsAACube(const CapsuleShape* capsuleA, const glm::vec3& cubeCenter, float cubeSide, CollisionList& collisions) {
// find nearest approach of capsule line segment to cube
glm::vec3 capsuleAxis;
capsuleA->computeNormalizedAxis(capsuleAxis);
float offset = glm::dot(cubeCenter - capsuleA->getTranslation(), capsuleAxis);
float halfHeight = capsuleA->getHalfHeight();
if (offset > halfHeight) {
offset = halfHeight;
} else if (offset < -halfHeight) {
offset = -halfHeight;
}
glm::vec3 nearestApproach = capsuleA->getTranslation() + offset * capsuleAxis;
// collide nearest approach like a sphere at that point
return sphereVsAACube(nearestApproach, capsuleA->getRadius(), cubeCenter, cubeSide, collisions);
}
bool findRayIntersectionWithShapes(const QVector<Shape*> shapes, const glm::vec3& rayStart, const glm::vec3& rayDirection, float& minDistance) {
float hitDistance = FLT_MAX;
int numShapes = shapes.size();

View file

@ -39,13 +39,6 @@ namespace ShapeCollider {
bool collideShapeWithShapes(const Shape* shapeA, const QVector<Shape*>& shapes, int startIndex, CollisionList& collisions);
bool collideShapesWithShapes(const QVector<Shape*>& shapesA, const QVector<Shape*>& shapesB, CollisionList& collisions);
/// \param shapeA a pointer to a shape (cannot be NULL)
/// \param cubeCenter center of cube
/// \param cubeSide lenght of side of cube
/// \param collisions[out] average collision details
/// \return true if shapeA collides with axis aligned cube
bool collideShapeWithAACube(const Shape* shapeA, const glm::vec3& cubeCenter, float cubeSide, CollisionList& collisions);
/// \param sphereA pointer to first shape (cannot be NULL)
/// \param sphereB pointer to second shape (cannot be NULL)
/// \param[out] collisions where to append collision details
@ -100,6 +93,16 @@ namespace ShapeCollider {
/// \return true if shapes collide
bool planeVsPlane(const Shape* planeA, const Shape* planeB, CollisionList& collisions);
/// helper function for *VsAACube() methods
/// \param sphereCenter center of sphere
/// \param sphereRadius radius of sphere
/// \param cubeCenter center of AACube
/// \param cubeSide scale of cube
/// \param[out] collisions where to append collision details
/// \return valid pointer to CollisionInfo if sphere and cube overlap or NULL if not
CollisionInfo* sphereVsAACubeHelper(const glm::vec3& sphereCenter, float sphereRadius,
const glm::vec3& cubeCenter, float cubeSide, CollisionList& collisions);
bool sphereVsAACube(const Shape* shapeA, const Shape* shapeB, CollisionList& collisions);
bool capsuleVsAACube(const Shape* shapeA, const Shape* shapeB, CollisionList& collisions);
bool aaCubeVsSphere(const Shape* shapeA, const Shape* shapeB, CollisionList& collisions);
@ -124,20 +127,6 @@ namespace ShapeCollider {
/// \return true if shapes collide
bool listVsList(const Shape* listA, const Shape* listB, CollisionList& collisions);
/// \param sphereA pointer to sphere (cannot be NULL)
/// \param cubeCenter center of cube
/// \param cubeSide lenght of side of cube
/// \param[out] collisions where to append collision details
/// \return true if sphereA collides with axis aligned cube
bool sphereVsAACube(const SphereShape* sphereA, const glm::vec3& cubeCenter, float cubeSide, CollisionList& collisions);
/// \param capsuleA pointer to capsule (cannot be NULL)
/// \param cubeCenter center of cube
/// \param cubeSide lenght of side of cube
/// \param[out] collisions where to append collision details
/// \return true if capsuleA collides with axis aligned cube
bool capsuleVsAACube(const CapsuleShape* capsuleA, const glm::vec3& cubeCenter, float cubeSide, CollisionList& collisions);
/// \param shapes list of pointers to shapes (shape pointers may be NULL)
/// \param startPoint beginning of ray
/// \param direction direction of ray

View file

@ -683,81 +683,93 @@ void ShapeColliderTests::capsuleTouchesCapsule() {
void ShapeColliderTests::sphereTouchesAACubeFaces() {
CollisionList collisions(16);
glm::vec3 cubeCenter(1.23f, 4.56f, 7.89f);
float cubeSide = 2.34f;
float sphereRadius = 1.13f;
glm::vec3 sphereCenter(0.0f);
SphereShape sphere(sphereRadius, sphereCenter);
QVector<glm::vec3> axes;
axes.push_back(xAxis);
axes.push_back(-xAxis);
axes.push_back(yAxis);
axes.push_back(-yAxis);
axes.push_back(zAxis);
axes.push_back(-zAxis);
glm::vec3 cubeCenter(1.23f, 4.56f, 7.89f);
float cubeSide = 4.34f;
for (int i = 0; i < axes.size(); ++i) {
glm::vec3 axis = axes[i];
// outside
{
collisions.clear();
float overlap = 0.25f;
float sphereOffset = 0.5f * cubeSide + sphereRadius - overlap;
sphereCenter = cubeCenter + sphereOffset * axis;
sphere.setTranslation(sphereCenter);
if (!ShapeCollider::sphereVsAACube(&sphere, cubeCenter, cubeSide, collisions)){
std::cout << __FILE__ << ":" << __LINE__ << " ERROR: sphere should collide with cube. axis = " << axis
<< std::endl;
}
CollisionInfo* collision = collisions[0];
if (!collision) {
std::cout << __FILE__ << ":" << __LINE__ << " ERROR: no CollisionInfo. axis = " << axis << std::endl;
}
glm::vec3 expectedPenetration = - overlap * axis;
if (glm::distance(expectedPenetration, collision->_penetration) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__ << " ERROR: penetration = " << collision->_penetration
<< " expected " << expectedPenetration << " axis = " << axis << std::endl;
}
glm::vec3 expectedContact = sphereCenter - sphereRadius * axis;
if (glm::distance(expectedContact, collision->_contactPoint) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__ << " ERROR: contactaPoint = " << collision->_contactPoint
<< " expected " << expectedContact << " axis = " << axis << std::endl;
}
}
glm::vec3 faceNormals[] = {xAxis, yAxis, zAxis};
int numDirections = 3;
// inside
{
collisions.clear();
float overlap = 1.25f * sphereRadius;
float sphereOffset = 0.5f * cubeSide + sphereRadius - overlap;
sphereCenter = cubeCenter + sphereOffset * axis;
sphere.setTranslation(sphereCenter);
for (int i = 0; i < numDirections; ++i) {
// loop over both sides of cube positive and negative
for (float sign = -1.0f; sign < 2.0f; sign += 2.0f) {
glm::vec3 faceNormal = sign * faceNormals[i];
// outside
{
collisions.clear();
float overlap = 0.25f * sphereRadius;
float parallelOffset = 0.5f * cubeSide + sphereRadius - overlap;
float perpOffset = 0.25f * cubeSide;
glm::vec3 expectedPenetration = - overlap * faceNormal;
if (!ShapeCollider::sphereVsAACube(&sphere, cubeCenter, cubeSide, collisions)){
std::cout << __FILE__ << ":" << __LINE__ << " ERROR: sphere should collide with cube."
<< " axis = " << axis << std::endl;
}
CollisionInfo* collision = collisions[0];
if (!collision) {
std::cout << __FILE__ << ":" << __LINE__ << " ERROR: no CollisionInfo on y-axis."
<< " axis = " << axis << std::endl;
// We rotate the position of the sphereCenter about a circle on the cube face so that
// it hits the same face in multiple spots. The penetration should be invarient for
// all collisions.
float delta = TWO_PI / 4.0f;
for (float angle = 0; angle < TWO_PI + EPSILON; angle += delta) {
glm::quat rotation = glm::angleAxis(angle, faceNormal);
glm::vec3 perpAxis = rotation * faceNormals[(i + 1) % numDirections];
sphereCenter = cubeCenter + parallelOffset * faceNormal + perpOffset * perpAxis;
CollisionInfo* collision = ShapeCollider::sphereVsAACubeHelper(sphereCenter, sphereRadius,
cubeCenter, cubeSide, collisions);
if (!collision) {
std::cout << __FILE__ << ":" << __LINE__ << " ERROR: sphere should collide with cube. faceNormal = " << faceNormal
<< std::endl;
break;
}
if (glm::distance(expectedPenetration, collision->_penetration) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__ << " ERROR: penetration = " << collision->_penetration
<< " expected " << expectedPenetration << " faceNormal = " << faceNormal << std::endl;
}
glm::vec3 expectedContact = sphereCenter - sphereRadius * faceNormal;
if (glm::distance(expectedContact, collision->_contactPoint) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__ << " ERROR: contactaPoint = " << collision->_contactPoint
<< " expected " << expectedContact << " faceNormal = " << faceNormal << std::endl;
}
if (collision->getShapeA()) {
std::cout << __FILE__ << ":" << __LINE__ << " ERROR: collision->_shapeA should be NULL" << std::endl;
}
if (collision->getShapeB()) {
std::cout << __FILE__ << ":" << __LINE__ << " ERROR: collision->_shapeB should be NULL" << std::endl;
}
}
}
glm::vec3 expectedPenetration = - overlap * axis;
if (glm::distance(expectedPenetration, collision->_penetration) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__ << " ERROR: penetration = " << collision->_penetration
<< " expected " << expectedPenetration << " axis = " << axis << std::endl;
}
// inside
{
collisions.clear();
float overlap = 1.25f * sphereRadius;
float sphereOffset = 0.5f * cubeSide + sphereRadius - overlap;
sphereCenter = cubeCenter + sphereOffset * faceNormal;
CollisionInfo* collision = ShapeCollider::sphereVsAACubeHelper(sphereCenter, sphereRadius,
cubeCenter, cubeSide, collisions);
glm::vec3 expectedContact = sphereCenter - sphereRadius * axis;
if (glm::distance(expectedContact, collision->_contactPoint) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__ << " ERROR: contactaPoint = " << collision->_contactPoint
<< " expected " << expectedContact << " axis = " << axis << std::endl;
if (!collision) {
std::cout << __FILE__ << ":" << __LINE__ << " ERROR: sphere should collide with cube."
<< " faceNormal = " << faceNormal << std::endl;
break;
}
glm::vec3 expectedPenetration = - overlap * faceNormal;
if (glm::distance(expectedPenetration, collision->_penetration) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__ << " ERROR: penetration = " << collision->_penetration
<< " expected " << expectedPenetration << " faceNormal = " << faceNormal << std::endl;
}
glm::vec3 expectedContact = sphereCenter - sphereRadius * faceNormal;
if (glm::distance(expectedContact, collision->_contactPoint) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__ << " ERROR: contactaPoint = " << collision->_contactPoint
<< " expected " << expectedContact << " faceNormal = " << faceNormal << std::endl;
}
}
}
}
@ -766,64 +778,133 @@ void ShapeColliderTests::sphereTouchesAACubeFaces() {
void ShapeColliderTests::sphereTouchesAACubeEdges() {
CollisionList collisions(20);
glm::vec3 cubeCenter(0.0f, 0.0f, 0.0f);
float cubeSide = 2.0f;
float sphereRadius = 1.0f;
float sphereRadius = 1.37f;
glm::vec3 sphereCenter(0.0f);
SphereShape sphere(sphereRadius, sphereCenter);
QVector<glm::vec3> axes;
// edges
axes.push_back(glm::vec3(0.0f, 1.0f, 1.0f));
axes.push_back(glm::vec3(0.0f, 1.0f, -1.0f));
axes.push_back(glm::vec3(0.0f, -1.0f, 1.0f));
axes.push_back(glm::vec3(0.0f, -1.0f, -1.0f));
axes.push_back(glm::vec3(1.0f, 1.0f, 0.0f));
axes.push_back(glm::vec3(1.0f, -1.0f, 0.0f));
axes.push_back(glm::vec3(-1.0f, 1.0f, 0.0f));
axes.push_back(glm::vec3(-1.0f, -1.0f, 0.0f));
axes.push_back(glm::vec3(1.0f, 0.0f, 1.0f));
axes.push_back(glm::vec3(1.0f, 0.0f, -1.0f));
axes.push_back(glm::vec3(-1.0f, 0.0f, 1.0f));
axes.push_back(glm::vec3(-1.0f, 0.0f, -1.0f));
// and corners
axes.push_back(glm::vec3(1.0f, 1.0f, 1.0f));
axes.push_back(glm::vec3(1.0f, 1.0f, -1.0f));
axes.push_back(glm::vec3(1.0f, -1.0f, 1.0f));
axes.push_back(glm::vec3(1.0f, -1.0f, -1.0f));
axes.push_back(glm::vec3(-1.0f, 1.0f, 1.0f));
axes.push_back(glm::vec3(-1.0f, 1.0f, -1.0f));
axes.push_back(glm::vec3(-1.0f, -1.0f, 1.0f));
axes.push_back(glm::vec3(-1.0f, -1.0f, -1.0f));
glm::vec3 cubeCenter(1.23f, 4.56f, 7.89f);
float cubeSide = 2.98f;
for (int i =0; i < axes.size(); ++i) {
glm::vec3 axis = axes[i];
float lengthAxis = glm::length(axis);
axis /= lengthAxis;
float overlap = 0.25f;
sphereCenter = cubeCenter + (lengthAxis * 0.5f * cubeSide + sphereRadius - overlap) * axis;
sphere.setTranslation(sphereCenter);
if (!ShapeCollider::sphereVsAACube(&sphere, cubeCenter, cubeSide, collisions)){
std::cout << __FILE__ << ":" << __LINE__ << " ERROR: sphere should collide with cube. axis = " << axis << std::endl;
}
CollisionInfo* collision = collisions[i];
if (!collision) {
std::cout << __FILE__ << ":" << __LINE__ << " ERROR: no CollisionInfo. axis = " << axis << std::endl;
float overlap = 0.25 * sphereRadius;
int numSteps = 5;
glm::vec3 faceNormals[] = {xAxis, yAxis, zAxis};
int numDirections = 3;
// loop over each face...
for (int i = 0; i < numDirections; ++i) {
for (float faceSign = -1.0f; faceSign < 2.0f; faceSign += 2.0f) {
glm::vec3 faceNormal = faceSign * faceNormals[i];
// loop over each neighboring face...
for (int j = (i + 1) % numDirections; j != i; j = (j + 1) % numDirections) {
// Compute the index to the third direction, which points perpendicular to both the face
// and the neighbor face.
int k = (j + 1) % numDirections;
if (k == i) {
k = (i + 1) % numDirections;
}
glm::vec3 thirdNormal = faceNormals[k];
for (float neighborSign = -1.0f; neighborSign < 2.0f; neighborSign += 2.0f) {
collisions.clear();
glm::vec3 neighborNormal = neighborSign * faceNormals[j];
// combine the face and neighbor normals to get the edge normal
glm::vec3 edgeNormal = glm::normalize(faceNormal + neighborNormal);
// Step the sphere along the edge in the direction of thirdNormal, starting at one corner and
// moving to the other. Test the penetration (invarient) and contact (changing) at each point.
glm::vec3 expectedPenetration = - overlap * edgeNormal;
float delta = cubeSide / (float)(numSteps - 1);
glm::vec3 startPosition = cubeCenter + (0.5f * cubeSide) * (faceNormal + neighborNormal - thirdNormal);
for (int m = 0; m < numSteps; ++m) {
sphereCenter = startPosition + ((float)m * delta) * thirdNormal + (sphereRadius - overlap) * edgeNormal;
CollisionInfo* collision = ShapeCollider::sphereVsAACubeHelper(sphereCenter, sphereRadius,
cubeCenter, cubeSide, collisions);
if (!collision) {
std::cout << __FILE__ << ":" << __LINE__ << " ERROR: sphere should collide with cube edge."
<< " edgeNormal = " << edgeNormal << std::endl;
break;
}
if (glm::distance(expectedPenetration, collision->_penetration) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__ << " ERROR: penetration = " << collision->_penetration
<< " expected " << expectedPenetration << " edgeNormal = " << edgeNormal << std::endl;
}
glm::vec3 expectedContact = sphereCenter - sphereRadius * edgeNormal;
if (glm::distance(expectedContact, collision->_contactPoint) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__ << " ERROR: contactaPoint = " << collision->_contactPoint
<< " expected " << expectedContact << " edgeNormal = " << edgeNormal << std::endl;
}
}
}
}
}
}
}
void ShapeColliderTests::sphereTouchesAACubeCorners() {
CollisionList collisions(20);
glm::vec3 expectedPenetration = - overlap * axis;
if (glm::distance(expectedPenetration, collision->_penetration) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__ << " ERROR: penetration = " << collision->_penetration
<< " expected " << expectedPenetration << " axis = " << axis << std::endl;
}
float sphereRadius = 1.37f;
glm::vec3 sphereCenter(0.0f);
glm::vec3 cubeCenter(1.23f, 4.56f, 7.89f);
float cubeSide = 2.98f;
float overlap = 0.25 * sphereRadius;
int numSteps = 5;
glm::vec3 faceNormals[] = {xAxis, yAxis, zAxis};
for (float firstSign = -1.0f; firstSign < 2.0f; firstSign += 2.0f) {
glm::vec3 firstNormal = firstSign * faceNormals[0];
for (float secondSign = -1.0f; secondSign < 2.0f; secondSign += 2.0f) {
glm::vec3 secondNormal = secondSign * faceNormals[1];
for (float thirdSign = -1.0f; thirdSign < 2.0f; thirdSign += 2.0f) {
collisions.clear();
glm::vec3 thirdNormal = thirdSign * faceNormals[2];
// the cornerNormal is the normalized sum of the three faces
glm::vec3 cornerNormal = glm::normalize(firstNormal + secondNormal + thirdNormal);
// compute a direction that is slightly offset from cornerNormal
glm::vec3 perpAxis = glm::normalize(glm::cross(cornerNormal, firstNormal));
glm::vec3 nearbyAxis = glm::normalize(cornerNormal + 0.1f * perpAxis);
// swing the sphere on a small cone that starts at the corner and is centered on the cornerNormal
float delta = TWO_PI / (float)(numSteps - 1);
for (int i = 0; i < numSteps; i++) {
float angle = (float)i * delta;
glm::quat rotation = glm::angleAxis(angle, cornerNormal);
glm::vec3 offsetAxis = rotation * nearbyAxis;
sphereCenter = cubeCenter + (SQUARE_ROOT_OF_3 * 0.5f * cubeSide) * cornerNormal + (sphereRadius - overlap) * offsetAxis;
CollisionInfo* collision = ShapeCollider::sphereVsAACubeHelper(sphereCenter, sphereRadius,
cubeCenter, cubeSide, collisions);
glm::vec3 expectedContact = sphereCenter - sphereRadius * axis;
if (glm::distance(expectedContact, collision->_contactPoint) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__ << " ERROR: contactaPoint = " << collision->_contactPoint
<< " expected " << expectedContact << " axis = " << axis << std::endl;
if (!collision) {
std::cout << __FILE__ << ":" << __LINE__ << " ERROR: sphere should collide with cube corner."
<< " cornerNormal = " << cornerNormal << std::endl;
break;
}
glm::vec3 expectedPenetration = - overlap * offsetAxis;
if (glm::distance(expectedPenetration, collision->_penetration) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__ << " ERROR: penetration = " << collision->_penetration
<< " expected " << expectedPenetration << " cornerNormal = " << cornerNormal << std::endl;
}
glm::vec3 expectedContact = sphereCenter - sphereRadius * offsetAxis;
if (glm::distance(expectedContact, collision->_contactPoint) > EPSILON) {
std::cout << __FILE__ << ":" << __LINE__ << " ERROR: contactaPoint = " << collision->_contactPoint
<< " expected " << expectedContact << " cornerNormal = " << cornerNormal << std::endl;
}
}
}
}
}
}
@ -831,55 +912,113 @@ void ShapeColliderTests::sphereTouchesAACubeEdges() {
void ShapeColliderTests::sphereMissesAACube() {
CollisionList collisions(16);
float sphereRadius = 1.0f;
glm::vec3 sphereCenter(0.0f);
glm::vec3 cubeCenter(1.23f, 4.56f, 7.89f);
float cubeSide = 2.0f;
float sphereRadius = 1.0f;
glm::vec3 sphereCenter(0.0f);
SphereShape sphere(sphereRadius, sphereCenter);
glm::vec3 faceNormals[] = {xAxis, yAxis, zAxis};
int numDirections = 3;
float sphereOffset = (0.5f * cubeSide + sphereRadius + 0.25f);
float offset = 2.0f * EPSILON;
// top
sphereCenter = cubeCenter + sphereOffset * yAxis;
sphere.setTranslation(sphereCenter);
if (ShapeCollider::sphereVsAACube(&sphere, cubeCenter, cubeSide, collisions)){
std::cout << __FILE__ << ":" << __LINE__ << " ERROR: sphere should NOT collide with cube" << std::endl;
// faces
for (int i = 0; i < numDirections; ++i) {
for (float sign = -1.0f; sign < 2.0f; sign += 2.0f) {
glm::vec3 faceNormal = sign * faceNormals[i];
sphereCenter = cubeCenter + (0.5f * cubeSide + sphereRadius + offset) * faceNormal;
CollisionInfo* collision = ShapeCollider::sphereVsAACubeHelper(sphereCenter, sphereRadius,
cubeCenter, cubeSide, collisions);
if (collision) {
std::cout << __FILE__ << ":" << __LINE__ << " ERROR: sphere should NOT collide with cube face."
<< " faceNormal = " << faceNormal << std::endl;
}
}
}
// edges
int numSteps = 5;
// loop over each face...
for (int i = 0; i < numDirections; ++i) {
for (float faceSign = -1.0f; faceSign < 2.0f; faceSign += 2.0f) {
glm::vec3 faceNormal = faceSign * faceNormals[i];
// loop over each neighboring face...
for (int j = (i + 1) % numDirections; j != i; j = (j + 1) % numDirections) {
// Compute the index to the third direction, which points perpendicular to both the face
// and the neighbor face.
int k = (j + 1) % numDirections;
if (k == i) {
k = (i + 1) % numDirections;
}
glm::vec3 thirdNormal = faceNormals[k];
for (float neighborSign = -1.0f; neighborSign < 2.0f; neighborSign += 2.0f) {
collisions.clear();
glm::vec3 neighborNormal = neighborSign * faceNormals[j];
// combine the face and neighbor normals to get the edge normal
glm::vec3 edgeNormal = glm::normalize(faceNormal + neighborNormal);
// Step the sphere along the edge in the direction of thirdNormal, starting at one corner and
// moving to the other. Test the penetration (invarient) and contact (changing) at each point.
float delta = cubeSide / (float)(numSteps - 1);
glm::vec3 startPosition = cubeCenter + (0.5f * cubeSide) * (faceNormal + neighborNormal - thirdNormal);
for (int m = 0; m < numSteps; ++m) {
sphereCenter = startPosition + ((float)m * delta) * thirdNormal + (sphereRadius + offset) * edgeNormal;
CollisionInfo* collision = ShapeCollider::sphereVsAACubeHelper(sphereCenter, sphereRadius,
cubeCenter, cubeSide, collisions);
// bottom
sphereCenter = cubeCenter - sphereOffset * yAxis;
sphere.setTranslation(sphereCenter);
if (ShapeCollider::sphereVsAACube(&sphere, cubeCenter, cubeSide, collisions)){
std::cout << __FILE__ << ":" << __LINE__ << " ERROR: sphere should NOT collide with cube" << std::endl;
if (collision) {
std::cout << __FILE__ << ":" << __LINE__ << " ERROR: sphere should NOT collide with cube edge."
<< " edgeNormal = " << edgeNormal << std::endl;
}
}
}
}
}
}
// left
sphereCenter = cubeCenter + sphereOffset * xAxis;
sphere.setTranslation(sphereCenter);
if (ShapeCollider::sphereVsAACube(&sphere, cubeCenter, cubeSide, collisions)){
std::cout << __FILE__ << ":" << __LINE__ << " ERROR: sphere should NOT collide with cube" << std::endl;
}
// corners
for (float firstSign = -1.0f; firstSign < 2.0f; firstSign += 2.0f) {
glm::vec3 firstNormal = firstSign * faceNormals[0];
for (float secondSign = -1.0f; secondSign < 2.0f; secondSign += 2.0f) {
glm::vec3 secondNormal = secondSign * faceNormals[1];
for (float thirdSign = -1.0f; thirdSign < 2.0f; thirdSign += 2.0f) {
collisions.clear();
glm::vec3 thirdNormal = thirdSign * faceNormals[2];
// right
sphereCenter = cubeCenter - sphereOffset * xAxis;
sphere.setTranslation(sphereCenter);
if (ShapeCollider::sphereVsAACube(&sphere, cubeCenter, cubeSide, collisions)){
std::cout << __FILE__ << ":" << __LINE__ << " ERROR: sphere should NOT collide with cube" << std::endl;
}
// the cornerNormal is the normalized sum of the three faces
glm::vec3 cornerNormal = glm::normalize(firstNormal + secondNormal + thirdNormal);
// forward
sphereCenter = cubeCenter + sphereOffset * zAxis;
sphere.setTranslation(sphereCenter);
if (ShapeCollider::sphereVsAACube(&sphere, cubeCenter, cubeSide, collisions)){
std::cout << __FILE__ << ":" << __LINE__ << " ERROR: sphere should NOT collide with cube" << std::endl;
}
// compute a direction that is slightly offset from cornerNormal
glm::vec3 perpAxis = glm::normalize(glm::cross(cornerNormal, firstNormal));
glm::vec3 nearbyAxis = glm::normalize(cornerNormal + 0.3f * perpAxis);
// back
sphereCenter = cubeCenter - sphereOffset * zAxis;
sphere.setTranslation(sphereCenter);
if (ShapeCollider::sphereVsAACube(&sphere, cubeCenter, cubeSide, collisions)){
std::cout << __FILE__ << ":" << __LINE__ << " ERROR: sphere should NOT collide with cube" << std::endl;
// swing the sphere on a small cone that starts at the corner and is centered on the cornerNormal
float delta = TWO_PI / (float)(numSteps - 1);
for (int i = 0; i < numSteps; i++) {
float angle = (float)i * delta;
glm::quat rotation = glm::angleAxis(angle, cornerNormal);
glm::vec3 offsetAxis = rotation * nearbyAxis;
sphereCenter = cubeCenter + (SQUARE_ROOT_OF_3 * 0.5f * cubeSide) * cornerNormal + (sphereRadius + offset) * offsetAxis;
CollisionInfo* collision = ShapeCollider::sphereVsAACubeHelper(sphereCenter, sphereRadius,
cubeCenter, cubeSide, collisions);
if (collision) {
std::cout << __FILE__ << ":" << __LINE__ << " ERROR: sphere should NOT collide with cube corner."
<< " cornerNormal = " << cornerNormal << std::endl;
break;
}
}
}
}
}
}
@ -1347,6 +1486,7 @@ void ShapeColliderTests::runAllTests() {
sphereTouchesAACubeFaces();
sphereTouchesAACubeEdges();
sphereTouchesAACubeCorners();
sphereMissesAACube();
rayHitsSphere();

View file

@ -25,6 +25,7 @@ namespace ShapeColliderTests {
void sphereTouchesAACubeFaces();
void sphereTouchesAACubeEdges();
void sphereTouchesAACubeCorners();
void sphereMissesAACube();
void rayHitsSphere();