This commit is contained in:
Philip Rosedale 2013-05-09 17:23:41 -07:00
commit a56ad3ec28
10 changed files with 432 additions and 261 deletions

View file

@ -266,21 +266,15 @@ void Avatar::reset() {
// Update avatar head rotation with sensor data
void Avatar::updateHeadFromGyros(float frametime, SerialInterface* serialInterface, glm::vec3* gravity) {
void Avatar::updateHeadFromGyros(float deltaTime, SerialInterface* serialInterface, glm::vec3* gravity) {
float measuredPitchRate = 0.0f;
float measuredRollRate = 0.0f;
float measuredYawRate = 0.0f;
if (serialInterface->active && USING_INVENSENSE_MPU9150) {
measuredPitchRate = serialInterface->getLastPitchRate();
measuredYawRate = serialInterface->getLastYawRate();
measuredRollRate = serialInterface->getLastRollRate();
} else {
measuredPitchRate = serialInterface->getRelativeValue(HEAD_PITCH_RATE);
measuredYawRate = serialInterface->getRelativeValue(HEAD_YAW_RATE);
measuredRollRate = serialInterface->getRelativeValue(HEAD_ROLL_RATE);
}
measuredPitchRate = serialInterface->getLastPitchRate();
measuredYawRate = serialInterface->getLastYawRate();
measuredRollRate = serialInterface->getLastRollRate();
// Update avatar head position based on measured gyro rates
const float MAX_PITCH = 45;
const float MIN_PITCH = -45;
@ -289,13 +283,34 @@ void Avatar::updateHeadFromGyros(float frametime, SerialInterface* serialInterfa
const float MAX_ROLL = 50;
const float MIN_ROLL = -50;
addHeadPitch(measuredPitchRate * frametime);
addHeadYaw(measuredYawRate * frametime);
addHeadRoll(measuredRollRate * frametime);
addHeadPitch(measuredPitchRate * deltaTime);
addHeadYaw(measuredYawRate * deltaTime);
addHeadRoll(measuredRollRate * deltaTime);
setHeadPitch(glm::clamp(getHeadPitch(), MIN_PITCH, MAX_PITCH));
setHeadYaw(glm::clamp(getHeadYaw(), MIN_YAW, MAX_YAW));
setHeadRoll(glm::clamp(getHeadRoll(), MIN_ROLL, MAX_ROLL));
// Update head lean distance based on accelerometer data
const float LEAN_SENSITIVITY = 0.15;
const float LEAN_MAX = 0.45;
const float LEAN_AVERAGING = 10.0;
glm::vec3 headRotationRates(getHeadPitch(), getHeadYaw(), getHeadRoll());
float headRateMax = 50.f;
glm::vec3 leaning = (serialInterface->getLastAcceleration() - serialInterface->getGravity())
* LEAN_SENSITIVITY
* (1.f - fminf(glm::length(headRotationRates), headRateMax) / headRateMax);
leaning.y = 0.f;
if (glm::length(leaning) < LEAN_MAX) {
_head.leanForward = _head.leanForward * (1.f - LEAN_AVERAGING * deltaTime) +
(LEAN_AVERAGING * deltaTime) * leaning.z * LEAN_SENSITIVITY;
_head.leanSideways = _head.leanSideways * (1.f - LEAN_AVERAGING * deltaTime) +
(LEAN_AVERAGING * deltaTime) * leaning.x * LEAN_SENSITIVITY;
}
setHeadLeanSideways(_head.leanSideways);
setHeadLeanForward(_head.leanForward);
}
float Avatar::getAbsoluteHeadYaw() const {
@ -329,6 +344,8 @@ void Avatar::simulate(float deltaTime) {
// update balls
if (_balls) { _balls->simulate(deltaTime); }
// if other avatar, update head position from network data
// update avatar skeleton
updateSkeleton();
@ -517,14 +534,12 @@ void Avatar::updateHandMovementAndTouching(float deltaTime) {
void Avatar::updateHead(float deltaTime) {
// hold on to this - used for testing....
/*
static float test = 0.0f;
test += deltaTime;
_head.leanForward = 0.02 * sin( test * 0.2f );
_head.leanSideways = 0.02 * sin( test * 0.3f );
*/
// Get head position data from network for other people
if (!_isMine) {
_head.leanSideways = getHeadLeanSideways();
_head.leanForward = getHeadLeanForward();
}
//apply the head lean values to the springy position...
if (fabs(_head.leanSideways + _head.leanForward) > 0.0f) {
glm::vec3 headLean =
@ -551,7 +566,7 @@ void Avatar::updateHead(float deltaTime) {
}
// Decay head back to center if turned on
if (_returnHeadToCenter) {
if (_isMine && _returnHeadToCenter) {
// Decay back toward center
_headPitch *= (1.0f - DECAY * _head.returnSpringScale * 2 * deltaTime);
_headYaw *= (1.0f - DECAY * _head.returnSpringScale * 2 * deltaTime);
@ -559,15 +574,14 @@ void Avatar::updateHead(float deltaTime) {
}
// For invensense gyro, decay only slightly when roughly centered
if (USING_INVENSENSE_MPU9150) {
const float RETURN_RANGE = 5.0;
const float RETURN_STRENGTH = 1.0;
if (_isMine) {
const float RETURN_RANGE = 15.0;
const float RETURN_STRENGTH = 2.0;
if (fabs(_headPitch) < RETURN_RANGE) { _headPitch *= (1.0f - RETURN_STRENGTH * deltaTime); }
if (fabs(_headYaw) < RETURN_RANGE) { _headYaw *= (1.0f - RETURN_STRENGTH * deltaTime); }
if (fabs(_headRoll) < RETURN_RANGE) { _headRoll *= (1.0f - RETURN_STRENGTH * deltaTime); }
}
if (_head.noise) {
// Move toward new target
_headPitch += (_head.pitchTarget - _headPitch) * 10 * deltaTime; // (1.f - DECAY*deltaTime)*Pitch + ;

View file

@ -29,7 +29,7 @@ int serialBufferPos = 0;
const int ZERO_OFFSET = 2048;
const short NO_READ_MAXIMUM_MSECS = 3000;
const short SAMPLES_TO_DISCARD = 100; // Throw out the first few samples
const int GRAVITY_SAMPLES = 200; // Use the first samples to compute gravity vector
const int GRAVITY_SAMPLES = 60; // Use the first samples to compute gravity vector
const bool USING_INVENSENSE_MPU9150 = 1;
@ -131,42 +131,11 @@ void SerialInterface::initializePort(char* portname, int baud) {
#endif
}
// Reset Trailing averages to the current measurement
void SerialInterface::resetTrailingAverages() {
for (int i = 1; i < NUM_CHANNELS; i++) trailingAverage[i] = lastMeasured[i];
}
// Render the serial interface channel values onscreen as vertical lines
void SerialInterface::renderLevels(int width, int height) {
int i;
int disp_x = 10;
const int GAP = 16;
char val[40];
if (!USING_INVENSENSE_MPU9150) {
for(i = 0; i < NUM_CHANNELS; i++) {
// Actual value
glLineWidth(2.0);
glColor4f(1, 1, 1, 1);
glBegin(GL_LINES);
glVertex2f(disp_x, height * 0.95);
glVertex2f(disp_x, height * (0.25 + 0.75f * getValue(i) / 4096));
glColor4f(1, 0, 0, 1);
glVertex2f(disp_x - 3, height * (0.25 + 0.75f * getValue(i) / 4096));
glVertex2f(disp_x, height * (0.25 + 0.75f * getValue(i) / 4096));
glEnd();
// Trailing Average value
glBegin(GL_LINES);
glColor4f(1, 1, 1, 1);
glVertex2f(disp_x, height * (0.25 + 0.75f * getTrailingValue(i) / 4096));
glVertex2f(disp_x + 4, height * (0.25 + 0.75f * getTrailingValue(i) / 4096));
glEnd();
sprintf(val, "%d", getValue(i));
drawtext(disp_x - GAP / 2, (height * 0.95) + 2, 0.08, 90, 1.0, 0, val, 0, 1, 0);
disp_x += GAP;
}
} else {
if (USING_INVENSENSE_MPU9150) {
// For invensense gyros, render as horizontal bars
const int LEVEL_CORNER_X = 10;
const int LEVEL_CORNER_Y = 200;
@ -177,18 +146,37 @@ void SerialInterface::renderLevels(int width, int height) {
drawtext(LEVEL_CORNER_X, LEVEL_CORNER_Y + 15, 0.10, 0, 1.0, 1, val, 0, 1, 0);
sprintf(val, "Roll %4.1f", _lastRollRate);
drawtext(LEVEL_CORNER_X, LEVEL_CORNER_Y + 30, 0.10, 0, 1.0, 1, val, 0, 1, 0);
sprintf(val, "X %4.3f", _lastAccelX);
drawtext(LEVEL_CORNER_X, LEVEL_CORNER_Y + 45, 0.10, 0, 1.0, 1, val, 0, 1, 0);
sprintf(val, "Y %4.3f", _lastAccelY);
drawtext(LEVEL_CORNER_X, LEVEL_CORNER_Y + 60, 0.10, 0, 1.0, 1, val, 0, 1, 0);
sprintf(val, "Z %4.3f", _lastAccelZ);
drawtext(LEVEL_CORNER_X, LEVEL_CORNER_Y + 75, 0.10, 0, 1.0, 1, val, 0, 1, 0);
// Draw the levels as horizontal lines
const int LEVEL_CENTER = 150;
const float ACCEL_VIEW_SCALING = 50.f;
glLineWidth(2.0);
glColor4f(1, 1, 1, 1);
glBegin(GL_LINES);
// Gyro rates
glVertex2f(LEVEL_CORNER_X + LEVEL_CENTER, LEVEL_CORNER_Y - 3);
glVertex2f(LEVEL_CORNER_X + LEVEL_CENTER + _lastYawRate, LEVEL_CORNER_Y - 3);
glVertex2f(LEVEL_CORNER_X + LEVEL_CENTER, LEVEL_CORNER_Y + 12);
glVertex2f(LEVEL_CORNER_X + LEVEL_CENTER + _lastPitchRate, LEVEL_CORNER_Y + 12);
glVertex2f(LEVEL_CORNER_X + LEVEL_CENTER, LEVEL_CORNER_Y + 27);
glVertex2f(LEVEL_CORNER_X + LEVEL_CENTER + _lastRollRate, LEVEL_CORNER_Y + 27);
// Acceleration
glVertex2f(LEVEL_CORNER_X + LEVEL_CENTER, LEVEL_CORNER_Y + 42);
glVertex2f(LEVEL_CORNER_X + LEVEL_CENTER + (int)((_lastAccelX - _gravity.x)* ACCEL_VIEW_SCALING),
LEVEL_CORNER_Y + 42);
glVertex2f(LEVEL_CORNER_X + LEVEL_CENTER, LEVEL_CORNER_Y + 57);
glVertex2f(LEVEL_CORNER_X + LEVEL_CENTER + (int)((_lastAccelY - _gravity.y) * ACCEL_VIEW_SCALING),
LEVEL_CORNER_Y + 57);
glVertex2f(LEVEL_CORNER_X + LEVEL_CENTER, LEVEL_CORNER_Y + 72);
glVertex2f(LEVEL_CORNER_X + LEVEL_CENTER + (int)((_lastAccelZ - _gravity.z) * ACCEL_VIEW_SCALING),
LEVEL_CORNER_Y + 72);
glEnd();
// Draw green vertical centerline
glColor4f(0, 1, 0, 0.5);
@ -197,18 +185,6 @@ void SerialInterface::renderLevels(int width, int height) {
glVertex2f(LEVEL_CORNER_X + LEVEL_CENTER, LEVEL_CORNER_Y + 30);
glEnd();
}
// Display Serial latency block
if (LED) {
glColor3f(1,0,0);
glBegin(GL_QUADS); {
glVertex2f(width - 100, height - 100);
glVertex2f(width, height - 100);
glVertex2f(width, height);
glVertex2f(width - 100, height);
}
glEnd();
}
}
void convertHexToInt(unsigned char* sourceBuffer, int& destinationInt) {
@ -237,15 +213,17 @@ void SerialInterface::readData() {
int accelXRate, accelYRate, accelZRate;
convertHexToInt(sensorBuffer + 6, accelXRate);
convertHexToInt(sensorBuffer + 6, accelZRate);
convertHexToInt(sensorBuffer + 10, accelYRate);
convertHexToInt(sensorBuffer + 14, accelZRate);
convertHexToInt(sensorBuffer + 14, accelXRate);
const float LSB_TO_METERS_PER_SECOND = 1.f / 16384.f;
const float LSB_TO_METERS_PER_SECOND2 = 1.f / 16384.f * 9.80665f;
// From MPU-9150 register map, with setting on
// highest resolution = +/- 2G
_lastAccelX = ((float) accelXRate) * LSB_TO_METERS_PER_SECOND;
_lastAccelY = ((float) accelYRate) * LSB_TO_METERS_PER_SECOND;
_lastAccelZ = ((float) accelZRate) * LSB_TO_METERS_PER_SECOND;
_lastAccelX = ((float) accelXRate) * LSB_TO_METERS_PER_SECOND2;
_lastAccelY = ((float) accelYRate) * LSB_TO_METERS_PER_SECOND2;
_lastAccelZ = ((float) -accelZRate) * LSB_TO_METERS_PER_SECOND2;
int rollRate, yawRate, pitchRate;
@ -262,61 +240,20 @@ void SerialInterface::readData() {
_lastYawRate = ((float) yawRate) * LSB_TO_DEGREES_PER_SECOND;
_lastPitchRate = ((float) -pitchRate) * LSB_TO_DEGREES_PER_SECOND + PITCH_BIAS;
totalSamples++;
} else {
// This array sets the rate of trailing averaging for each channel:
// If the sensor rate is 100Hz, 0.001 will make the long term average a 10-second average
const float AVG_RATE[] = {0.002, 0.002, 0.002, 0.002, 0.002, 0.002};
char bufchar[1];
while (read(_serialDescriptor, &bufchar, 1) > 0) {
serialBuffer[serialBufferPos] = bufchar[0];
serialBufferPos++;
// Have we reached end of a line of input?
if ((bufchar[0] == '\n') || (serialBufferPos >= MAX_BUFFER)) {
std::string serialLine(serialBuffer, serialBufferPos-1);
//printLog("%s\n", serialLine.c_str());
int spot;
//int channel = 0;
std::string val;
for (int i = 0; i < NUM_CHANNELS + 2; i++) {
spot = serialLine.find_first_of(" ", 0);
if (spot != std::string::npos) {
val = serialLine.substr(0,spot);
//printLog("%s\n", val.c_str());
if (i < NUM_CHANNELS) lastMeasured[i] = atoi(val.c_str());
else samplesAveraged = atoi(val.c_str());
} else LED = atoi(serialLine.c_str());
serialLine = serialLine.substr(spot+1, serialLine.length() - spot - 1);
}
// Update Trailing Averages
for (int i = 0; i < NUM_CHANNELS; i++) {
if (totalSamples > SAMPLES_TO_DISCARD) {
trailingAverage[i] = (1.f - AVG_RATE[i])*trailingAverage[i] +
AVG_RATE[i]*(float)lastMeasured[i];
} else {
trailingAverage[i] = (float)lastMeasured[i];
}
}
// Use a set of initial samples to compute gravity
if (totalSamples < GRAVITY_SAMPLES) {
gravity.x += lastMeasured[ACCEL_X];
gravity.y += lastMeasured[ACCEL_Y];
gravity.z += lastMeasured[ACCEL_Z];
}
if (totalSamples == GRAVITY_SAMPLES) {
gravity = glm::normalize(gravity);
printLog("gravity: %f,%f,%f\n", gravity.x, gravity.y, gravity.z);
}
totalSamples++;
serialBufferPos = 0;
}
// Accumulate an initial reading for gravity
// Use a set of initial samples to compute gravity
if (totalSamples < GRAVITY_SAMPLES) {
_gravity.x += _lastAccelX;
_gravity.y += _lastAccelY;
_gravity.z += _lastAccelZ;
}
}
if (totalSamples == GRAVITY_SAMPLES) {
_gravity /= (float) totalSamples;
printLog("Gravity: %f\n", glm::length(_gravity));
}
totalSamples++;
}
if (initialSamples == totalSamples) {
timeval now;
@ -336,23 +273,10 @@ void SerialInterface::resetSerial() {
#ifdef __APPLE__
active = false;
totalSamples = 0;
_gravity = glm::vec3(0, 0, 0);
gettimeofday(&lastGoodRead, NULL);
if (!USING_INVENSENSE_MPU9150) {
gravity = glm::vec3(0, -1, 0);
// Clear the measured and average channel data
for (int i = 0; i < NUM_CHANNELS; i++) {
lastMeasured[i] = 0;
trailingAverage[i] = 0.0;
}
// Clear serial input buffer
for (int i = 1; i < MAX_BUFFER; i++) {
serialBuffer[i] = ' ';
}
}
#endif
}

View file

@ -32,7 +32,7 @@
#define HEAD_YAW_RATE 0
#define HEAD_ROLL_RATE 2
extern const bool USING_INVENSENSE_MPU9150;
//const bool USING_INVENSENSE_MPU9150;
class SerialInterface {
public:
@ -50,30 +50,20 @@ public:
float getLastYawRate() const { return _lastYawRate; }
float getLastPitchRate() const { return _lastPitchRate; }
float getLastRollRate() const { return _lastRollRate; }
glm::vec3 getLastAcceleration() { return glm::vec3(_lastAccelX, _lastAccelY, _lastAccelZ); };
glm::vec3 getGravity() {return _gravity;};
int getLED() {return LED;};
int getNumSamples() {return samplesAveraged;};
int getValue(int num) {return lastMeasured[num];};
int getRelativeValue(int num) {return static_cast<int>(lastMeasured[num] - trailingAverage[num]);};
float getTrailingValue(int num) {return trailingAverage[num];};
void resetTrailingAverages();
void renderLevels(int width, int height);
bool active;
glm::vec3 getGravity() {return gravity;};
private:
void initializePort(char* portname, int baud);
void resetSerial();
int _serialDescriptor;
int lastMeasured[NUM_CHANNELS];
float trailingAverage[NUM_CHANNELS];
int samplesAveraged;
int LED;
int totalSamples;
timeval lastGoodRead;
glm::vec3 gravity;
glm::vec3 _gravity;
float _lastAccelX;
float _lastAccelY;
float _lastAccelZ;

View file

@ -43,7 +43,7 @@ GLubyte identityIndices[] = { 0,2,1, 0,3,2, // Z- .
VoxelSystem::VoxelSystem() {
_voxelsInReadArrays = _voxelsInWriteArrays = _voxelsUpdated = 0;
_alwaysRenderFullVBO = true;
_renderFullVBO = true;
_tree = new VoxelTree();
pthread_mutex_init(&_bufferWriteLock, NULL);
}
@ -138,8 +138,9 @@ void VoxelSystem::setupNewVoxelsForDrawing() {
PerformanceWarning warn(_renderWarningsOn, "setupNewVoxelsForDrawing()"); // would like to include _voxelsInArrays, _voxelsUpdated
double start = usecTimestampNow();
double sinceLastTime = (start - _setupNewVoxelsForDrawingLastFinished) / 1000.0;
if (sinceLastTime <= std::max(_setupNewVoxelsForDrawingLastElapsed, SIXTY_FPS_IN_MILLISECONDS)) {
bool iAmDebugging = false; // if you're debugging set this to true, so you won't get skipped for slow debugging
if (!iAmDebugging && sinceLastTime <= std::max(_setupNewVoxelsForDrawingLastElapsed, SIXTY_FPS_IN_MILLISECONDS)) {
return; // bail early, it hasn't been long enough since the last time we ran
}
@ -147,19 +148,37 @@ void VoxelSystem::setupNewVoxelsForDrawing() {
// If the view frustum has changed, since last time, then remove nodes that are out of view
if ((sinceLastViewCulling >= std::max(_lastViewCullingElapsed, VIEW_CULLING_RATE_IN_MILLISECONDS)) && hasViewChanged()) {
_lastViewCulling = start;
// When we call removeOutOfView() voxels, we don't actually remove the voxels from the VBOs, but we do remove
// them from tree, this makes our tree caclulations faster, but doesn't require us to fully rebuild the VBOs (which
// can be expensive).
removeOutOfView();
// Once we call cleanupRemovedVoxels() we do need to rebuild our VBOs (if anything was actually removed). So,
// we should consider putting this someplace else... as this might be able to occur less frequently, and save us on
// VBO reubuilding. Possibly we should do this only if our actual VBO usage crosses some lower boundary.
cleanupRemovedVoxels();
double endViewCulling = usecTimestampNow();
_lastViewCullingElapsed = (endViewCulling - start) / 1000.0;
}
if (_tree->isDirty()) {
PerformanceWarning warn(_renderWarningsOn, "calling... newTreeToArrays()");
static char buffer[64] = { 0 };
if (_renderWarningsOn) {
sprintf(buffer, "newTreeToArrays() _renderFullVBO=%s", (_renderFullVBO ? "yes" : "no"));
};
PerformanceWarning warn(_renderWarningsOn, buffer);
_callsToTreesToArrays++;
if (_alwaysRenderFullVBO) {
if (_renderFullVBO) {
_voxelsInWriteArrays = 0; // reset our VBO
}
_voxelsUpdated = newTreeToArrays(_tree->rootNode);
_tree->clearDirtyBit(); // after we pull the trees into the array, we can consider the tree clean
// since we called treeToArrays, we can assume that our VBO is in sync, and so partial updates to the VBOs are
// ok again, until/unless we call removeOutOfView()
_renderFullVBO = false;
} else {
_voxelsUpdated = 0;
}
@ -176,6 +195,16 @@ void VoxelSystem::setupNewVoxelsForDrawing() {
_setupNewVoxelsForDrawingLastElapsed = elapsedmsec;
}
void VoxelSystem::cleanupRemovedVoxels() {
PerformanceWarning warn(_renderWarningsOn, "cleanupRemovedVoxels()");
if (!_removedVoxels.isEmpty()) {
while (!_removedVoxels.isEmpty()) {
delete _removedVoxels.extract();
}
_renderFullVBO = true; // if we remove voxels, we must update our full VBOs
}
}
void VoxelSystem::copyWrittenDataToReadArrays() {
PerformanceWarning warn(_renderWarningsOn, "copyWrittenDataToReadArrays()"); // would like to include _voxelsInArrays, _voxelsUpdated
if (_voxelsDirty && _voxelsUpdated) {
@ -210,16 +239,16 @@ int VoxelSystem::newTreeToArrays(VoxelNode* node) {
voxelsUpdated += newTreeToArrays(node->getChildAtIndex(i));
}
}
if (_alwaysRenderFullVBO) {
voxelsUpdated += newway__updateNodeInArray(node);
if (_renderFullVBO) {
voxelsUpdated += updateNodeInArraysAsFullVBO(node);
} else {
voxelsUpdated += oldway__updateNodeInArray(node);
voxelsUpdated += updateNodeInArraysAsPartialVBO(node);
}
node->clearDirtyBit(); // always clear the dirty bit, even if it doesn't need to be rendered
return voxelsUpdated;
}
int VoxelSystem::newway__updateNodeInArray(VoxelNode* node) {
int VoxelSystem::updateNodeInArraysAsFullVBO(VoxelNode* node) {
// If we've run out of room, then just bail...
if (_voxelsInWriteArrays >= MAX_VOXELS_PER_SYSTEM) {
return 0;
@ -238,18 +267,24 @@ int VoxelSystem::newway__updateNodeInArray(VoxelNode* node) {
*(writeVerticesAt+j) = startVertex[j % 3] + (identityVertices[j] * voxelScale);
*(writeColorsAt +j) = node->getColor()[j % 3];
}
_voxelsInWriteArrays++; // our know vertices in the arrays
node->setBufferIndex(nodeIndex);
_voxelDirtyArray[nodeIndex] = true; // just in case we switch to Partial mode
_voxelsInWriteArrays++; // our know vertices in the arrays
return 1; // rendered
}
return 0; // not-rendered
}
int VoxelSystem::oldway__updateNodeInArray(VoxelNode* node) {
// Now, if we've changed any attributes (our renderness, our color, etc) then update the Arrays... for us
if (node->isDirty() && (node->getShouldRender() || node->isKnownBufferIndex())) {
int VoxelSystem::updateNodeInArraysAsPartialVBO(VoxelNode* node) {
// If we've run out of room, then just bail...
if (_voxelsInWriteArrays >= MAX_VOXELS_PER_SYSTEM) {
return 0;
}
// Now, if we've changed any attributes (our renderness, our color, etc) then update the Arrays...
if (node->isDirty()) {
glm::vec3 startVertex;
float voxelScale = 0;
// If we're should render, use our legit location and scale,
if (node->getShouldRender()) {
startVertex = node->getCorner();
@ -267,8 +302,9 @@ int VoxelSystem::oldway__updateNodeInArray(VoxelNode* node) {
nodeIndex = node->getBufferIndex();
} else {
nodeIndex = _voxelsInWriteArrays;
node->setBufferIndex(nodeIndex);
_voxelsInWriteArrays++;
}
_voxelDirtyArray[nodeIndex] = true;
// populate the array with points for the 8 vertices
@ -279,10 +315,6 @@ int VoxelSystem::oldway__updateNodeInArray(VoxelNode* node) {
*(writeVerticesAt+j) = startVertex[j % 3] + (identityVertices[j] * voxelScale);
*(writeColorsAt +j) = node->getColor()[j % 3];
}
if (!node->isKnownBufferIndex()) {
node->setBufferIndex(nodeIndex);
_voxelsInWriteArrays++; // our know vertices in the arrays
}
return 1; // updated!
}
return 0; // not-updated
@ -373,53 +405,90 @@ void VoxelSystem::init() {
delete[] normalsArray;
}
void VoxelSystem::updateVBOs() {
PerformanceWarning warn(_renderWarningsOn, "updateVBOs()"); // would like to include _callsToTreesToArrays
if (_voxelsDirty) {
if (_alwaysRenderFullVBO) {
glBufferIndex segmentStart = 0;
glBufferIndex segmentEnd = _voxelsInWriteArrays;
int segmentLength = (segmentEnd - segmentStart) + 1;
GLintptr segmentStartAt = segmentStart * VERTEX_POINTS_PER_VOXEL * sizeof(GLfloat);
GLsizeiptr segmentSizeBytes = segmentLength * VERTEX_POINTS_PER_VOXEL * sizeof(GLfloat);
GLfloat* readVerticesFrom = _readVerticesArray + (segmentStart * VERTEX_POINTS_PER_VOXEL);
glBindBuffer(GL_ARRAY_BUFFER, _vboVerticesID);
glBufferSubData(GL_ARRAY_BUFFER, segmentStartAt, segmentSizeBytes, readVerticesFrom);
segmentStartAt = segmentStart * VERTEX_POINTS_PER_VOXEL * sizeof(GLubyte);
segmentSizeBytes = segmentLength * VERTEX_POINTS_PER_VOXEL * sizeof(GLubyte);
GLubyte* readColorsFrom = _readColorsArray + (segmentStart * VERTEX_POINTS_PER_VOXEL);
glBindBuffer(GL_ARRAY_BUFFER, _vboColorsID);
glBufferSubData(GL_ARRAY_BUFFER, segmentStartAt, segmentSizeBytes, readColorsFrom);
} else {
glBufferIndex segmentStart = 0;
glBufferIndex segmentEnd = 0;
bool inSegment = false;
for (glBufferIndex i = 0; i < _voxelsInWriteArrays; i++) {
if (!inSegment) {
if (_voxelDirtyArray[i]) {
segmentStart = i;
inSegment = true;
_voxelDirtyArray[i] = false; // consider us clean!
}
} else {
if (!_voxelDirtyArray[i] || (i == (_voxelsInWriteArrays - 1)) ) {
segmentEnd = i;
inSegment = false;
int segmentLength = (segmentEnd - segmentStart) + 1;
GLintptr segmentStartAt = segmentStart * VERTEX_POINTS_PER_VOXEL * sizeof(GLfloat);
GLsizeiptr segmentSizeBytes = segmentLength * VERTEX_POINTS_PER_VOXEL * sizeof(GLfloat);
GLfloat* readVerticesFrom = _readVerticesArray + (segmentStart * VERTEX_POINTS_PER_VOXEL);
glBindBuffer(GL_ARRAY_BUFFER, _vboVerticesID);
glBufferSubData(GL_ARRAY_BUFFER, segmentStartAt, segmentSizeBytes, readVerticesFrom);
segmentStartAt = segmentStart * VERTEX_POINTS_PER_VOXEL * sizeof(GLubyte);
segmentSizeBytes = segmentLength * VERTEX_POINTS_PER_VOXEL * sizeof(GLubyte);
GLubyte* readColorsFrom = _readColorsArray + (segmentStart * VERTEX_POINTS_PER_VOXEL);
glBindBuffer(GL_ARRAY_BUFFER, _vboColorsID);
glBufferSubData(GL_ARRAY_BUFFER, segmentStartAt, segmentSizeBytes, readColorsFrom);
}
}
void VoxelSystem::updateFullVBOs() {
glBufferIndex segmentStart = 0;
glBufferIndex segmentEnd = _voxelsInWriteArrays;
int segmentLength = (segmentEnd - segmentStart) + 1;
GLintptr segmentStartAt = segmentStart * VERTEX_POINTS_PER_VOXEL * sizeof(GLfloat);
GLsizeiptr segmentSizeBytes = segmentLength * VERTEX_POINTS_PER_VOXEL * sizeof(GLfloat);
GLfloat* readVerticesFrom = _readVerticesArray + (segmentStart * VERTEX_POINTS_PER_VOXEL);
glBindBuffer(GL_ARRAY_BUFFER, _vboVerticesID);
glBufferSubData(GL_ARRAY_BUFFER, segmentStartAt, segmentSizeBytes, readVerticesFrom);
segmentStartAt = segmentStart * VERTEX_POINTS_PER_VOXEL * sizeof(GLubyte);
segmentSizeBytes = segmentLength * VERTEX_POINTS_PER_VOXEL * sizeof(GLubyte);
GLubyte* readColorsFrom = _readColorsArray + (segmentStart * VERTEX_POINTS_PER_VOXEL);
glBindBuffer(GL_ARRAY_BUFFER, _vboColorsID);
glBufferSubData(GL_ARRAY_BUFFER, segmentStartAt, segmentSizeBytes, readColorsFrom);
// consider the _voxelDirtyArray[] clean!
memset(_voxelDirtyArray, false, _voxelsInWriteArrays * sizeof(bool));
}
void VoxelSystem::updatePartialVBOs() {
glBufferIndex segmentStart = 0;
glBufferIndex segmentEnd = 0;
bool inSegment = false;
for (glBufferIndex i = 0; i < _voxelsInWriteArrays; i++) {
bool thisVoxelDirty = _voxelDirtyArray[i];
if (!inSegment) {
if (thisVoxelDirty) {
segmentStart = i;
inSegment = true;
_voxelDirtyArray[i] = false; // consider us clean!
}
} else {
if (!thisVoxelDirty) {
// If we got here because because this voxel is NOT dirty, so the last dirty voxel was the one before
// this one and so that's where the "segment" ends
segmentEnd = i - 1;
inSegment = false;
int segmentLength = (segmentEnd - segmentStart) + 1;
GLintptr segmentStartAt = segmentStart * VERTEX_POINTS_PER_VOXEL * sizeof(GLfloat);
GLsizeiptr segmentSizeBytes = segmentLength * VERTEX_POINTS_PER_VOXEL * sizeof(GLfloat);
GLfloat* readVerticesFrom = _readVerticesArray + (segmentStart * VERTEX_POINTS_PER_VOXEL);
glBindBuffer(GL_ARRAY_BUFFER, _vboVerticesID);
glBufferSubData(GL_ARRAY_BUFFER, segmentStartAt, segmentSizeBytes, readVerticesFrom);
segmentStartAt = segmentStart * VERTEX_POINTS_PER_VOXEL * sizeof(GLubyte);
segmentSizeBytes = segmentLength * VERTEX_POINTS_PER_VOXEL * sizeof(GLubyte);
GLubyte* readColorsFrom = _readColorsArray + (segmentStart * VERTEX_POINTS_PER_VOXEL);
glBindBuffer(GL_ARRAY_BUFFER, _vboColorsID);
glBufferSubData(GL_ARRAY_BUFFER, segmentStartAt, segmentSizeBytes, readColorsFrom);
}
_voxelDirtyArray[i] = false; // consider us clean!
}
}
// if we got to the end of the array, and we're in an active dirty segment...
if (inSegment) {
segmentEnd = _voxelsInWriteArrays - 1;
inSegment = false;
int segmentLength = (segmentEnd - segmentStart) + 1;
GLintptr segmentStartAt = segmentStart * VERTEX_POINTS_PER_VOXEL * sizeof(GLfloat);
GLsizeiptr segmentSizeBytes = segmentLength * VERTEX_POINTS_PER_VOXEL * sizeof(GLfloat);
GLfloat* readVerticesFrom = _readVerticesArray + (segmentStart * VERTEX_POINTS_PER_VOXEL);
glBindBuffer(GL_ARRAY_BUFFER, _vboVerticesID);
glBufferSubData(GL_ARRAY_BUFFER, segmentStartAt, segmentSizeBytes, readVerticesFrom);
segmentStartAt = segmentStart * VERTEX_POINTS_PER_VOXEL * sizeof(GLubyte);
segmentSizeBytes = segmentLength * VERTEX_POINTS_PER_VOXEL * sizeof(GLubyte);
GLubyte* readColorsFrom = _readColorsArray + (segmentStart * VERTEX_POINTS_PER_VOXEL);
glBindBuffer(GL_ARRAY_BUFFER, _vboColorsID);
glBufferSubData(GL_ARRAY_BUFFER, segmentStartAt, segmentSizeBytes, readColorsFrom);
}
}
void VoxelSystem::updateVBOs() {
static char buffer[40] = { 0 };
if (_renderWarningsOn) {
sprintf(buffer, "updateVBOs() _renderFullVBO=%s", (_renderFullVBO ? "yes" : "no"));
};
PerformanceWarning warn(_renderWarningsOn, buffer); // would like to include _callsToTreesToArrays
if (_voxelsDirty) {
// updatePartialVBOs() is not yet working. For now, ALWAYS call updateFullVBOs()
if (_renderFullVBO) {
updateFullVBOs();
} else {
updatePartialVBOs(); // too many small segments?
}
_voxelsDirty = false;
}
@ -672,10 +741,14 @@ void VoxelSystem::removeOutOfView() {
removeOutOfViewArgs args(this);
_tree->recurseTreeWithOperation(removeOutOfViewOperation,(void*)&args);
if (_renderWarningsOn) {
printLog("removeOutOfView() scanned=%ld removed=%ld inside=%ld intersect=%ld outside=%ld bag.count()=%d \n",
if (args.nodesRemoved) {
_tree->setDirtyBit();
}
bool showRemoveDebugDetails = false;
if (showRemoveDebugDetails) {
printLog("removeOutOfView() scanned=%ld removed=%ld inside=%ld intersect=%ld outside=%ld _removedVoxels.count()=%d \n",
args.nodesScanned, args.nodesRemoved, args.nodesInside,
args.nodesIntersect, args.nodesOutside, args.dontRecurseBag.count()
args.nodesIntersect, args.nodesOutside, _removedVoxels.count()
);
}
}
@ -695,3 +768,133 @@ bool VoxelSystem::findRayIntersection(const glm::vec3& origin, const glm::vec3&
detail.blue = node->getColor()[2];
return true;
}
class falseColorizeRandomEveryOtherArgs {
public:
falseColorizeRandomEveryOtherArgs() : totalNodes(0), colorableNodes(0), coloredNodes(0), colorThis(true) {};
unsigned long totalNodes;
unsigned long colorableNodes;
unsigned long coloredNodes;
bool colorThis;
};
bool VoxelSystem::falseColorizeRandomEveryOtherOperation(VoxelNode* node, void* extraData) {
falseColorizeRandomEveryOtherArgs* args = (falseColorizeRandomEveryOtherArgs*)extraData;
args->totalNodes++;
if (node->isColored()) {
args->colorableNodes++;
if (args->colorThis) {
args->coloredNodes++;
node->setFalseColor(255, randomColorValue(150), randomColorValue(150));
}
args->colorThis = !args->colorThis;
}
return true; // keep going!
}
void VoxelSystem::falseColorizeRandomEveryOther() {
falseColorizeRandomEveryOtherArgs args;
_tree->recurseTreeWithOperation(falseColorizeRandomEveryOtherOperation,&args);
printLog("randomized false color for every other node: total %ld, colorable %ld, colored %ld\n",
args.totalNodes, args.colorableNodes, args.coloredNodes);
setupNewVoxelsForDrawing();
}
class collectStatsForTreesAndVBOsArgs {
public:
collectStatsForTreesAndVBOsArgs() :
totalNodes(0),
dirtyNodes(0),
shouldRenderNodes(0),
coloredNodes(0),
nodesInVBO(0),
nodesInVBOOverExpectedMax(0),
duplicateVBOIndex(0)
{
memset(hasIndexFound, false, MAX_VOXELS_PER_SYSTEM * sizeof(bool));
};
unsigned long totalNodes;
unsigned long dirtyNodes;
unsigned long shouldRenderNodes;
unsigned long coloredNodes;
unsigned long nodesInVBO;
unsigned long nodesInVBOOverExpectedMax;
unsigned long duplicateVBOIndex;
unsigned long expectedMax;
bool colorThis;
bool hasIndexFound[MAX_VOXELS_PER_SYSTEM];
};
bool VoxelSystem::collectStatsForTreesAndVBOsOperation(VoxelNode* node, void* extraData) {
collectStatsForTreesAndVBOsArgs* args = (collectStatsForTreesAndVBOsArgs*)extraData;
args->totalNodes++;
if (node->isColored()) {
args->coloredNodes++;
}
if (node->getShouldRender()) {
args->shouldRenderNodes++;
}
if (node->isDirty()) {
args->dirtyNodes++;
}
if (node->isKnownBufferIndex()) {
args->nodesInVBO++;
unsigned long nodeIndex = node->getBufferIndex();
if (args->hasIndexFound[nodeIndex]) {
args->duplicateVBOIndex++;
printLog("duplicateVBO found... index=%ld, isDirty=%s, shouldRender=%s \n", nodeIndex,
node->isDirty() ? "yes" : "no" , node->getShouldRender() ? "yes" : "no" );
} else {
args->hasIndexFound[nodeIndex] = true;
}
if (nodeIndex > args->expectedMax) {
args->nodesInVBOOverExpectedMax++;
}
}
return true; // keep going!
}
void VoxelSystem::collectStatsForTreesAndVBOs() {
glBufferIndex minDirty = GLBUFFER_INDEX_UNKNOWN;
glBufferIndex maxDirty = 0;
for (glBufferIndex i = 0; i < _voxelsInWriteArrays; i++) {
if (_voxelDirtyArray[i]) {
minDirty = std::min(minDirty,i);
maxDirty = std::max(maxDirty,i);
}
}
collectStatsForTreesAndVBOsArgs args;
args.expectedMax = _voxelsInWriteArrays;
_tree->recurseTreeWithOperation(collectStatsForTreesAndVBOsOperation,&args);
printLog("_voxelsDirty=%s _voxelsInWriteArrays=%ld minDirty=%ld maxDirty=%ld \n", (_voxelsDirty ? "yes" : "no"),
_voxelsInWriteArrays, minDirty, maxDirty);
printLog("stats: total %ld, dirty %ld, colored %ld, shouldRender %ld, inVBO %ld, nodesInVBOOverExpectedMax %ld, duplicateVBOIndex %ld\n",
args.totalNodes, args.dirtyNodes, args.coloredNodes, args.shouldRenderNodes,
args.nodesInVBO, args.nodesInVBOOverExpectedMax, args.duplicateVBOIndex);
glBufferIndex minInVBO = GLBUFFER_INDEX_UNKNOWN;
glBufferIndex maxInVBO = 0;
for (glBufferIndex i = 0; i < MAX_VOXELS_PER_SYSTEM; i++) {
if (args.hasIndexFound[i]) {
minInVBO = std::min(minInVBO,i);
maxInVBO = std::max(maxInVBO,i);
}
}
printLog("minInVBO=%ld maxInVBO=%ld _voxelsInWriteArrays=%ld _voxelsInReadArrays=%ld\n",
minInVBO, maxInVBO, _voxelsInWriteArrays, _voxelsInReadArrays);
}

View file

@ -57,6 +57,7 @@ public:
void trueColorize();
void falseColorizeInView(ViewFrustum* viewFrustum);
void falseColorizeDistanceFromView(ViewFrustum* viewFrustum);
void falseColorizeRandomEveryOther();
void killLocalVoxels();
void setRenderPipelineWarnings(bool on) { _renderWarningsOn = on; };
@ -67,6 +68,8 @@ public:
bool findRayIntersection(const glm::vec3& origin, const glm::vec3& direction,
VoxelDetail& detail, float& distance, BoxFace& face);
void collectStatsForTreesAndVBOs();
private:
int _callsToTreesToArrays;
@ -82,9 +85,11 @@ private:
static bool falseColorizeDistanceFromViewOperation(VoxelNode* node, void* extraData);
static bool getDistanceFromViewRangeOperation(VoxelNode* node, void* extraData);
static bool removeOutOfViewOperation(VoxelNode* node, void* extraData);
static bool falseColorizeRandomEveryOtherOperation(VoxelNode* node, void* extraData);
static bool collectStatsForTreesAndVBOsOperation(VoxelNode* node, void* extraData);
int newway__updateNodeInArray(VoxelNode* node);
int oldway__updateNodeInArray(VoxelNode* node);
int updateNodeInArraysAsFullVBO(VoxelNode* node);
int updateNodeInArraysAsPartialVBO(VoxelNode* node);
// these are kinda hacks, used by getDistanceFromViewRangeOperation() probably shouldn't be here
static float _maxDistance;
@ -103,7 +108,7 @@ private:
unsigned long _voxelsInReadArrays;
unsigned long _unusedArraySpace;
bool _alwaysRenderFullVBO;
bool _renderFullVBO;
double _setupNewVoxelsForDrawingLastElapsed;
double _setupNewVoxelsForDrawingLastFinished;
@ -120,11 +125,18 @@ private:
ViewFrustum _lastKnowViewFrustum;
int newTreeToArrays(VoxelNode *currentNode);
void cleanupRemovedVoxels();
void setupNewVoxelsForDrawing();
void copyWrittenDataToReadArrays();
void updateVBOs();
bool _voxelsDirty;
public:
void updateVBOs();
void updateFullVBOs(); // all voxels in the VBO
void updatePartialVBOs(); // multiple segments, only dirty voxels
};
#endif

View file

@ -364,10 +364,6 @@ void reset_sensors() {
headMouseY = HEIGHT/2;
myAvatar.reset();
if (serialPort.active) {
serialPort.resetTrailingAverages();
}
}
//
@ -379,15 +375,9 @@ void updateAvatar(float deltaTime) {
myAvatar.updateHeadFromGyros(deltaTime, &serialPort, &gravity);
// Grab latest readings from the gyros
float measuredYawRate, measuredPitchRate;
if (USING_INVENSENSE_MPU9150) {
measuredPitchRate = serialPort.getLastPitchRate();
measuredYawRate = serialPort.getLastYawRate();
} else {
measuredPitchRate = serialPort.getRelativeValue(HEAD_PITCH_RATE);
measuredYawRate = serialPort.getRelativeValue(HEAD_YAW_RATE);
}
float measuredPitchRate = serialPort.getLastPitchRate();
float measuredYawRate = serialPort.getLastYawRate();
// Update gyro-based mouse (X,Y on screen)
const float MIN_MOUSE_RATE = 30.0;
const float MOUSE_SENSITIVITY = 0.1f;
@ -1330,6 +1320,20 @@ int doRandomizeVoxelColors(int state) {
return state;
}
int doFalseRandomizeEveryOtherVoxelColors(int state) {
if (state == MENU_ROW_PICKED) {
::voxels.falseColorizeRandomEveryOther();
}
return state;
}
int doTreeStats(int state) {
if (state == MENU_ROW_PICKED) {
::voxels.collectStatsForTreesAndVBOs();
}
return state;
}
int doFalseRandomizeVoxelColors(int state) {
if (state == MENU_ROW_PICKED) {
::voxels.falseColorizeRandom();
@ -1426,9 +1430,11 @@ void initMenu() {
menuColumnDebug->addRow("Kill Local Voxels", doKillLocalVoxels);
menuColumnDebug->addRow("Randomize Voxel TRUE Colors", doRandomizeVoxelColors);
menuColumnDebug->addRow("FALSE Color Voxels Randomly", doFalseRandomizeVoxelColors);
menuColumnDebug->addRow("FALSE Color Voxel Every Other Randomly", doFalseRandomizeEveryOtherVoxelColors);
menuColumnDebug->addRow("FALSE Color Voxels by Distance", doFalseColorizeByDistance);
menuColumnDebug->addRow("FALSE Color Voxel Out of View", doFalseColorizeInView);
menuColumnDebug->addRow("Show TRUE Colors", doTrueVoxelColors);
menuColumnDebug->addRow("Calculate Tree Stats", doTreeStats);
}
void testPointToVoxel() {
@ -1628,7 +1634,12 @@ void key(unsigned char k, int x, int y) {
}
// Process keypresses
if (k == 'q' || k == 'Q') ::terminate();
if (k == 'S') {
::voxels.collectStatsForTreesAndVBOs();
}
if (k == 'q' || k == 'Q') ::terminate();
if (k == '/') ::renderStatsOn = !::renderStatsOn; // toggle stats
if (k == '*') ::renderStarsOn = !::renderStarsOn; // toggle stars
if (k == 'V' || k == 'v') ::renderVoxels = !::renderVoxels; // toggle voxels
@ -1775,7 +1786,7 @@ void idle(void) {
}
// Read serial port interface devices
if (serialPort.active && USING_INVENSENSE_MPU9150) {
if (serialPort.active) {
serialPort.readData();
}
@ -1809,10 +1820,6 @@ void idle(void) {
lastTimeIdle = check;
}
// Read serial data
if (serialPort.active && !USING_INVENSENSE_MPU9150) {
serialPort.readData();
}
}
void reshape(int width, int height) {

View file

@ -42,6 +42,8 @@ AvatarData::AvatarData() :
_headYaw(0),
_headPitch(0),
_headRoll(0),
_headLeanSideways(0),
_headLeanForward(0),
_handState(0),
_cameraPosition(0,0,0),
_cameraDirection(0,0,0),
@ -84,7 +86,13 @@ int AvatarData::getBroadcastData(unsigned char* destinationBuffer) {
destinationBuffer += packFloatAngleToTwoByte(destinationBuffer, _headPitch);
destinationBuffer += packFloatAngleToTwoByte(destinationBuffer, _headRoll);
// Hand Position
// Head lean X,Z (head lateral and fwd/back motion relative to torso)
memcpy(destinationBuffer, &_headLeanSideways, sizeof(float));
destinationBuffer += sizeof(float);
memcpy(destinationBuffer, &_headLeanForward, sizeof(float));
destinationBuffer += sizeof(float);
// Hand Position
memcpy(destinationBuffer, &_handPosition, sizeof(float) * 3);
destinationBuffer += sizeof(float) * 3;
@ -150,6 +158,12 @@ int AvatarData::parseData(unsigned char* sourceBuffer, int numBytes) {
sourceBuffer += unpackFloatAngleFromTwoByte((uint16_t *)sourceBuffer, &_headPitch);
sourceBuffer += unpackFloatAngleFromTwoByte((uint16_t *)sourceBuffer, &_headRoll);
// Head position relative to pelvis
memcpy(&_headLeanSideways, sourceBuffer, sizeof(float));
sourceBuffer += sizeof(float);
memcpy(&_headLeanForward, sourceBuffer, sizeof(float));
sourceBuffer += sizeof(float);
// Hand Position
memcpy(&_handPosition, sourceBuffer, sizeof(float) * 3);
sourceBuffer += sizeof(float) * 3;

View file

@ -55,6 +55,12 @@ public:
void addHeadYaw(float y){_headYaw -= y; }
void addHeadRoll(float r){_headRoll += r; }
// Head vector deflection from pelvix in X,Z
void setHeadLeanSideways(float s) {_headLeanSideways = s; };
float getHeadLeanSideways() const { return _headLeanSideways; };
void setHeadLeanForward(float f) {_headLeanForward = f; };
float getHeadLeanForward() const { return _headLeanForward; };
// Hand State
void setHandState(char s) { _handState = s; };
char getHandState() const {return _handState; };
@ -104,6 +110,9 @@ protected:
float _headYaw;
float _headPitch;
float _headRoll;
float _headLeanSideways;
float _headLeanForward;
// Audio loudness (used to drive facial animation)
float _audioLoudness;

View file

@ -94,6 +94,7 @@ VoxelNode* VoxelNode::removeChildAtIndex(int childIndex) {
VoxelNode* returnedChild = _children[childIndex];
if (_children[childIndex]) {
_children[childIndex] = NULL;
_isDirty = true;
}
return returnedChild;
}
@ -150,9 +151,7 @@ void VoxelNode::setFalseColor(colorPart red, colorPart green, colorPart blue) {
_currentColor[1] = green;
_currentColor[2] = blue;
_currentColor[3] = 1; // XXXBHG - False colors are always considered set
//if (_shouldRender) {
_isDirty = true;
//}
_isDirty = true;
}
}
@ -163,9 +162,7 @@ void VoxelNode::setFalseColored(bool isFalseColored) {
memcpy(&_currentColor,&_trueColor,sizeof(nodeColor));
}
_falseColored = isFalseColored;
//if (_shouldRender) {
_isDirty = true;
//}
_isDirty = true;
}
};

View file

@ -61,6 +61,7 @@ public:
bool isDirty() const { return _isDirty; };
void clearDirtyBit() { _isDirty = false; };
void setDirtyBit() { _isDirty = true; };
unsigned long int getNodesChangedFromBitstream() const { return _nodesChangedFromBitstream; };
bool findRayIntersection(const glm::vec3& origin, const glm::vec3& direction,