overte-JulianGro/interface/src/VoxelSystem.cpp

188 lines
6.5 KiB
C++

//
// Cube.cpp
// interface
//
// Created by Philip on 12/31/12.
// Copyright (c) 2012 High Fidelity, Inc. All rights reserved.
//
#include <cstring>
#include <cmath>
#include <SharedUtil.h>
#include <OctalCode.h>
#include <AgentList.h>
#include "VoxelSystem.h"
const int MAX_VOXELS_PER_SYSTEM = 250000;
const int VERTICES_PER_VOXEL = 8;
const int VERTEX_POINTS_PER_VOXEL = 3 * VERTICES_PER_VOXEL;
const int INDICES_PER_VOXEL = 3 * 12;
float identityVertices[] = { 0, 0, 0,
1, 0, 0,
1, 1, 0,
0, 1, 0,
0, 0, 1,
1, 0, 1,
1, 1, 1,
0, 1, 1 };
GLubyte identityIndices[] = { 0,1,2, 0,2,3,
0,1,5, 0,4,5,
0,3,7, 0,4,7,
1,2,6, 1,5,6,
2,3,7, 2,6,7,
4,5,6, 4,6,7 };
VoxelSystem::VoxelSystem() {
voxelsRendered = 0;
tree = new VoxelTree();
}
VoxelSystem::~VoxelSystem() {
delete[] verticesArray;
delete[] colorsArray;
delete tree;
}
void VoxelSystem::parseData(void *data, int size) {
// output the bits received from the voxel server
unsigned char *voxelData = (unsigned char *) data + 1;
printf("Received a packet of %d bytes from VS\n", size);
// ask the VoxelTree to read the bitstream into the tree
tree->readBitstreamToTree(voxelData, size - 1);
// reset the verticesEndPointer so we're writing to the beginning of the array
verticesEndPointer = verticesArray;
// call recursive function to populate in memory arrays
// it will return the number of voxels added
voxelsRendered = treeToArrays(tree->rootNode);
// set the boolean if there are any voxels to be rendered so we re-fill the VBOs
voxelsToRender = (voxelsRendered > 0);
}
int VoxelSystem::treeToArrays(VoxelNode *currentNode) {
int voxelsAdded = 0;
for (int i = 0; i < 8; i++) {
// check if there is a child here
if (currentNode->children[i] != NULL) {
voxelsAdded += treeToArrays(currentNode->children[i]);
}
}
// if we didn't get any voxels added then we're a leaf
// add our vertex and color information to the interleaved array
if (voxelsAdded == 0 && currentNode->color[3] == 1) {
float * startVertex = firstVertexForCode(currentNode->octalCode);
float voxelScale = 1 / powf(2, *currentNode->octalCode);
// populate the array with points for the 8 vertices
// and RGB color for each added vertex
for (int j = 0; j < VERTEX_POINTS_PER_VOXEL; j++ ) {
*verticesEndPointer = startVertex[j % 3] + (identityVertices[j] * voxelScale);
*(colorsArray + (verticesEndPointer - verticesArray)) = currentNode->color[j % 3];
verticesEndPointer++;
}
voxelsAdded++;
delete [] startVertex;
}
return voxelsAdded;
}
VoxelSystem* VoxelSystem::clone() const {
// this still needs to be implemented, will need to be used if VoxelSystem is attached to agent
return NULL;
}
void VoxelSystem::init() {
// prep the data structures for incoming voxel data
verticesArray = new GLfloat[VERTEX_POINTS_PER_VOXEL * MAX_VOXELS_PER_SYSTEM];
colorsArray = new GLubyte[VERTEX_POINTS_PER_VOXEL * MAX_VOXELS_PER_SYSTEM];
GLuint *indicesArray = new GLuint[INDICES_PER_VOXEL * MAX_VOXELS_PER_SYSTEM];
// populate the indicesArray
// this will not change given new voxels, so we can set it all up now
for (int n = 0; n < MAX_VOXELS_PER_SYSTEM; n++) {
// fill the indices array
int voxelIndexOffset = n * INDICES_PER_VOXEL;
GLuint *currentIndicesPos = indicesArray + voxelIndexOffset;
int startIndex = (n * VERTICES_PER_VOXEL);
for (int i = 0; i < INDICES_PER_VOXEL; i++) {
// add indices for this side of the cube
currentIndicesPos[i] = startIndex + identityIndices[i];
}
}
// VBO for the verticesArray
glGenBuffers(1, &vboVerticesID);
glBindBuffer(GL_ARRAY_BUFFER, vboVerticesID);
glBufferData(GL_ARRAY_BUFFER, VERTEX_POINTS_PER_VOXEL * sizeof(GLfloat) * MAX_VOXELS_PER_SYSTEM, NULL, GL_DYNAMIC_DRAW);
// VBO for colorsArray
glGenBuffers(1, &vboColorsID);
glBindBuffer(GL_ARRAY_BUFFER, vboColorsID);
glBufferData(GL_ARRAY_BUFFER, VERTEX_POINTS_PER_VOXEL * sizeof(GLubyte) * MAX_VOXELS_PER_SYSTEM, NULL, GL_DYNAMIC_DRAW);
// VBO for the indicesArray
glGenBuffers(1, &vboIndicesID);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vboIndicesID);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, INDICES_PER_VOXEL * sizeof(GLuint) * MAX_VOXELS_PER_SYSTEM, indicesArray, GL_STATIC_DRAW);
// delete the indices array that is no longer needed
delete[] indicesArray;
}
void VoxelSystem::render() {
if (voxelsToRender) {
glBindBuffer(GL_ARRAY_BUFFER, vboVerticesID);
glBufferData(GL_ARRAY_BUFFER, VERTEX_POINTS_PER_VOXEL * sizeof(GLfloat) * MAX_VOXELS_PER_SYSTEM, NULL, GL_DYNAMIC_DRAW);
glBufferSubData(GL_ARRAY_BUFFER, 0, (verticesEndPointer - verticesArray) * sizeof(GLfloat), verticesArray);
glBindBuffer(GL_ARRAY_BUFFER, vboColorsID);
glBufferData(GL_ARRAY_BUFFER, VERTEX_POINTS_PER_VOXEL * sizeof(GLubyte) * MAX_VOXELS_PER_SYSTEM, NULL, GL_DYNAMIC_DRAW);
glBufferSubData(GL_ARRAY_BUFFER, 0, (verticesEndPointer - verticesArray) * sizeof(GLubyte), colorsArray);
voxelsToRender = false;
}
// tell OpenGL where to find vertex and color information
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_COLOR_ARRAY);
glBindBuffer(GL_ARRAY_BUFFER, vboVerticesID);
glVertexPointer(3, GL_FLOAT, 0, 0);
glBindBuffer(GL_ARRAY_BUFFER, vboColorsID);
glColorPointer(3, GL_UNSIGNED_BYTE, 0, 0);
// draw the number of voxels we have
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vboIndicesID);
glScalef(10, 10, 10);
glDrawElements(GL_TRIANGLES, 36 * voxelsRendered, GL_UNSIGNED_INT, 0);
// deactivate vertex and color arrays after drawing
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_COLOR_ARRAY);
// bind with 0 to switch back to normal operation
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
}
void VoxelSystem::simulate(float deltaTime) {
}