overte-JulianGro/interface/src/avatar/SkeletonModel.cpp
Anthony J. Thibault 7a10b31dd9 Clear translation on root joint.
Also, delete/rename all instances of updateJointState except for the one in Rig
and derived classes.
2015-07-30 15:04:27 -07:00

590 lines
25 KiB
C++

//
// SkeletonModel.cpp
// interface/src/avatar
//
// Created by Andrzej Kapolka on 10/17/13.
// Copyright 2013 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include <glm/gtx/transform.hpp>
#include <QMultiMap>
#include <DeferredLightingEffect.h>
#include "Application.h"
#include "Avatar.h"
#include "Hand.h"
#include "Menu.h"
#include "SkeletonModel.h"
#include "Util.h"
#include "InterfaceLogging.h"
SkeletonModel::SkeletonModel(Avatar* owningAvatar, QObject* parent, RigPointer rig) :
Model(rig, parent),
_triangleFanID(DependencyManager::get<GeometryCache>()->allocateID()),
_owningAvatar(owningAvatar),
_boundingCapsuleLocalOffset(0.0f),
_boundingCapsuleRadius(0.0f),
_boundingCapsuleHeight(0.0f),
_defaultEyeModelPosition(glm::vec3(0.0f, 0.0f, 0.0f)),
_headClipDistance(DEFAULT_NEAR_CLIP)
{
assert(_rig);
assert(_owningAvatar);
}
SkeletonModel::~SkeletonModel() {
}
void SkeletonModel::initJointStates(QVector<JointState> states) {
const FBXGeometry& geometry = _geometry->getFBXGeometry();
glm::mat4 parentTransform = glm::scale(_scale) * glm::translate(_offset) * geometry.offset;
_boundingRadius = _rig->initJointStates(states, parentTransform);
// Determine the default eye position for avatar scale = 1.0
int headJointIndex = _geometry->getFBXGeometry().headJointIndex;
if (0 <= headJointIndex && headJointIndex < _rig->getJointStateCount()) {
glm::vec3 leftEyePosition, rightEyePosition;
getEyeModelPositions(leftEyePosition, rightEyePosition);
glm::vec3 midEyePosition = (leftEyePosition + rightEyePosition) / 2.0f;
int rootJointIndex = _geometry->getFBXGeometry().rootJointIndex;
glm::vec3 rootModelPosition;
getJointPosition(rootJointIndex, rootModelPosition);
_defaultEyeModelPosition = midEyePosition - rootModelPosition;
_defaultEyeModelPosition.z = -_defaultEyeModelPosition.z;
// Skeleton may have already been scaled so unscale it
_defaultEyeModelPosition = _defaultEyeModelPosition / _scale;
}
// the SkeletonModel override of updateJointState() will clear the translation part
// of its root joint and we need that done before we try to build shapes hence we
// recompute all joint transforms at this time.
for (int i = 0; i < _rig->getJointStateCount(); i++) {
_rig->updateJointState(i, parentTransform);
}
buildShapes();
Extents meshExtents = getMeshExtents();
_headClipDistance = -(meshExtents.minimum.z / _scale.z - _defaultEyeModelPosition.z);
_headClipDistance = std::max(_headClipDistance, DEFAULT_NEAR_CLIP);
_owningAvatar->rebuildSkeletonBody();
emit skeletonLoaded();
}
const float PALM_PRIORITY = DEFAULT_PRIORITY;
const float LEAN_PRIORITY = DEFAULT_PRIORITY;
void SkeletonModel::updateRig(float deltaTime, glm::mat4 parentTransform) {
_rig->computeMotionAnimationState(deltaTime, _owningAvatar->getPosition(), _owningAvatar->getVelocity(), _owningAvatar->getOrientation());
Model::updateRig(deltaTime, parentTransform);
if (_owningAvatar->isMyAvatar()) {
const FBXGeometry& geometry = _geometry->getFBXGeometry();
Rig::HeadParameters params;
params.leanSideways = _owningAvatar->getHead()->getFinalLeanSideways();
params.leanForward = _owningAvatar->getHead()->getFinalLeanSideways();
params.torsoTwist = _owningAvatar->getHead()->getTorsoTwist();
params.localHeadOrientation = _owningAvatar->getHead()->getFinalOrientationInLocalFrame();
params.worldHeadOrientation = _owningAvatar->getHead()->getFinalOrientationInWorldFrame();
params.eyeLookAt = _owningAvatar->getHead()->getCorrectedLookAtPosition();
params.eyeSaccade = _owningAvatar->getHead()->getSaccade();
params.leanJointIndex = geometry.leanJointIndex;
params.neckJointIndex = geometry.neckJointIndex;
params.leftEyeJointIndex = geometry.leftEyeJointIndex;
params.rightEyeJointIndex = geometry.rightEyeJointIndex;
_rig->updateFromHeadParameters(params);
}
}
void SkeletonModel::simulate(float deltaTime, bool fullUpdate) {
setTranslation(_owningAvatar->getSkeletonPosition());
static const glm::quat refOrientation = glm::angleAxis(PI, glm::vec3(0.0f, 1.0f, 0.0f));
setRotation(_owningAvatar->getOrientation() * refOrientation);
setScale(glm::vec3(1.0f, 1.0f, 1.0f) * _owningAvatar->getScale());
setBlendshapeCoefficients(_owningAvatar->getHead()->getBlendshapeCoefficients());
Model::simulate(deltaTime, fullUpdate);
if (!isActive() || !_owningAvatar->isMyAvatar()) {
return; // only simulate for own avatar
}
MyAvatar* myAvatar = static_cast<MyAvatar*>(_owningAvatar);
if (myAvatar->isPlaying()) {
// Don't take inputs if playing back a recording.
return;
}
const FBXGeometry& geometry = _geometry->getFBXGeometry();
// find the left and rightmost active palms
int leftPalmIndex, rightPalmIndex;
Hand* hand = _owningAvatar->getHand();
hand->getLeftRightPalmIndices(leftPalmIndex, rightPalmIndex);
const float HAND_RESTORATION_RATE = 0.25f;
if (leftPalmIndex == -1 && rightPalmIndex == -1) {
// palms are not yet set, use mouse
if (_owningAvatar->getHandState() == HAND_STATE_NULL) {
restoreRightHandPosition(HAND_RESTORATION_RATE, PALM_PRIORITY);
} else {
// transform into model-frame
glm::vec3 handPosition = glm::inverse(_rotation) * (_owningAvatar->getHandPosition() - _translation);
applyHandPosition(geometry.rightHandJointIndex, handPosition);
}
restoreLeftHandPosition(HAND_RESTORATION_RATE, PALM_PRIORITY);
} else if (leftPalmIndex == rightPalmIndex) {
// right hand only
applyPalmData(geometry.rightHandJointIndex, hand->getPalms()[leftPalmIndex]);
restoreLeftHandPosition(HAND_RESTORATION_RATE, PALM_PRIORITY);
} else {
if (leftPalmIndex != -1) {
applyPalmData(geometry.leftHandJointIndex, hand->getPalms()[leftPalmIndex]);
} else {
restoreLeftHandPosition(HAND_RESTORATION_RATE, PALM_PRIORITY);
}
if (rightPalmIndex != -1) {
applyPalmData(geometry.rightHandJointIndex, hand->getPalms()[rightPalmIndex]);
} else {
restoreRightHandPosition(HAND_RESTORATION_RATE, PALM_PRIORITY);
}
}
}
void SkeletonModel::renderIKConstraints(gpu::Batch& batch) {
renderJointConstraints(batch, getRightHandJointIndex());
renderJointConstraints(batch, getLeftHandJointIndex());
}
class IndexValue {
public:
int index;
float value;
};
bool operator<(const IndexValue& firstIndex, const IndexValue& secondIndex) {
return firstIndex.value < secondIndex.value;
}
void SkeletonModel::applyHandPosition(int jointIndex, const glm::vec3& position) {
if (jointIndex == -1 || jointIndex >= _rig->getJointStateCount()) {
return;
}
// NOTE: 'position' is in model-frame
setJointPosition(jointIndex, position, glm::quat(), false, -1, false, glm::vec3(0.0f, -1.0f, 0.0f), PALM_PRIORITY);
const FBXGeometry& geometry = _geometry->getFBXGeometry();
glm::vec3 handPosition, elbowPosition;
getJointPosition(jointIndex, handPosition);
getJointPosition(geometry.joints.at(jointIndex).parentIndex, elbowPosition);
glm::vec3 forearmVector = handPosition - elbowPosition;
float forearmLength = glm::length(forearmVector);
if (forearmLength < EPSILON) {
return;
}
glm::quat handRotation;
if (!_rig->getJointStateRotation(jointIndex, handRotation)) {
return;
}
// align hand with forearm
float sign = (jointIndex == geometry.rightHandJointIndex) ? 1.0f : -1.0f;
_rig->applyJointRotationDelta(jointIndex,
rotationBetween(handRotation * glm::vec3(-sign, 0.0f, 0.0f), forearmVector),
true, PALM_PRIORITY);
}
void SkeletonModel::applyPalmData(int jointIndex, PalmData& palm) {
if (jointIndex == -1 || jointIndex >= _rig->getJointStateCount()) {
return;
}
const FBXGeometry& geometry = _geometry->getFBXGeometry();
float sign = (jointIndex == geometry.rightHandJointIndex) ? 1.0f : -1.0f;
int parentJointIndex = geometry.joints.at(jointIndex).parentIndex;
if (parentJointIndex == -1) {
return;
}
// rotate palm to align with its normal (normal points out of hand's palm)
glm::quat inverseRotation = glm::inverse(_rotation);
glm::vec3 palmPosition = inverseRotation * (palm.getPosition() - _translation);
glm::vec3 palmNormal = inverseRotation * palm.getNormal();
glm::vec3 fingerDirection = inverseRotation * palm.getFingerDirection();
glm::quat palmRotation = rotationBetween(geometry.palmDirection, palmNormal);
palmRotation = rotationBetween(palmRotation * glm::vec3(-sign, 0.0f, 0.0f), fingerDirection) * palmRotation;
if (Menu::getInstance()->isOptionChecked(MenuOption::AlternateIK)) {
setHandPosition(jointIndex, palmPosition, palmRotation);
} else if (Menu::getInstance()->isOptionChecked(MenuOption::AlignForearmsWithWrists)) {
float forearmLength = geometry.joints.at(jointIndex).distanceToParent * extractUniformScale(_scale);
glm::vec3 forearm = palmRotation * glm::vec3(sign * forearmLength, 0.0f, 0.0f);
setJointPosition(parentJointIndex, palmPosition + forearm,
glm::quat(), false, -1, false, glm::vec3(0.0f, -1.0f, 0.0f), PALM_PRIORITY);
_rig->setJointRotationInBindFrame(parentJointIndex, palmRotation, PALM_PRIORITY);
// lock hand to forearm by slamming its rotation (in parent-frame) to identity
_rig->setJointRotationInConstrainedFrame(jointIndex, glm::quat(), PALM_PRIORITY);
} else {
inverseKinematics(jointIndex, palmPosition, palmRotation, PALM_PRIORITY);
}
}
void SkeletonModel::renderJointConstraints(gpu::Batch& batch, int jointIndex) {
if (jointIndex == -1 || jointIndex >= _rig->getJointStateCount()) {
return;
}
const FBXGeometry& geometry = _geometry->getFBXGeometry();
const float BASE_DIRECTION_SIZE = 0.3f;
float directionSize = BASE_DIRECTION_SIZE * extractUniformScale(_scale);
batch._glLineWidth(3.0f);
do {
const FBXJoint& joint = geometry.joints.at(jointIndex);
const JointState& jointState = _rig->getJointState(jointIndex);
glm::vec3 position = _rotation * jointState.getPosition() + _translation;
glm::quat parentRotation = (joint.parentIndex == -1) ?
_rotation :
_rotation * _rig->getJointState(joint.parentIndex).getRotation();
float fanScale = directionSize * 0.75f;
Transform transform = Transform();
transform.setTranslation(position);
transform.setRotation(parentRotation);
transform.setScale(fanScale);
batch.setModelTransform(transform);
const int AXIS_COUNT = 3;
auto geometryCache = DependencyManager::get<GeometryCache>();
for (int i = 0; i < AXIS_COUNT; i++) {
if (joint.rotationMin[i] <= -PI + EPSILON && joint.rotationMax[i] >= PI - EPSILON) {
continue; // unconstrained
}
glm::vec3 axis;
axis[i] = 1.0f;
glm::vec3 otherAxis;
if (i == 0) {
otherAxis.y = 1.0f;
} else {
otherAxis.x = 1.0f;
}
glm::vec4 color(otherAxis.r, otherAxis.g, otherAxis.b, 0.75f);
QVector<glm::vec3> points;
points << glm::vec3(0.0f, 0.0f, 0.0f);
const int FAN_SEGMENTS = 16;
for (int j = 0; j < FAN_SEGMENTS; j++) {
glm::vec3 rotated = glm::angleAxis(glm::mix(joint.rotationMin[i], joint.rotationMax[i],
(float)j / (FAN_SEGMENTS - 1)), axis) * otherAxis;
points << rotated;
}
// TODO: this is really inefficient constantly recreating these vertices buffers. It would be
// better if the skeleton model cached these buffers for each of the joints they are rendering
geometryCache->updateVertices(_triangleFanID, points, color);
geometryCache->renderVertices(batch, gpu::TRIANGLE_FAN, _triangleFanID);
}
renderOrientationDirections(batch, jointIndex, position, _rotation * jointState.getRotation(), directionSize);
jointIndex = joint.parentIndex;
} while (jointIndex != -1 && geometry.joints.at(jointIndex).isFree);
}
void SkeletonModel::renderOrientationDirections(gpu::Batch& batch, int jointIndex,
glm::vec3 position, const glm::quat& orientation, float size) {
auto geometryCache = DependencyManager::get<GeometryCache>();
if (!_jointOrientationLines.contains(jointIndex)) {
OrientationLineIDs jointLineIDs;
jointLineIDs._up = geometryCache->allocateID();
jointLineIDs._front = geometryCache->allocateID();
jointLineIDs._right = geometryCache->allocateID();
_jointOrientationLines[jointIndex] = jointLineIDs;
}
OrientationLineIDs& jointLineIDs = _jointOrientationLines[jointIndex];
glm::vec3 pRight = position + orientation * IDENTITY_RIGHT * size;
glm::vec3 pUp = position + orientation * IDENTITY_UP * size;
glm::vec3 pFront = position + orientation * IDENTITY_FRONT * size;
glm::vec3 red(1.0f, 0.0f, 0.0f);
geometryCache->renderLine(batch, position, pRight, red, jointLineIDs._right);
glm::vec3 green(0.0f, 1.0f, 0.0f);
geometryCache->renderLine(batch, position, pUp, green, jointLineIDs._up);
glm::vec3 blue(0.0f, 0.0f, 1.0f);
geometryCache->renderLine(batch, position, pFront, blue, jointLineIDs._front);
}
void SkeletonModel::setHandPosition(int jointIndex, const glm::vec3& position, const glm::quat& rotation) {
// this algorithm is from sample code from sixense
const FBXGeometry& geometry = _geometry->getFBXGeometry();
int elbowJointIndex = geometry.joints.at(jointIndex).parentIndex;
if (elbowJointIndex == -1) {
return;
}
int shoulderJointIndex = geometry.joints.at(elbowJointIndex).parentIndex;
glm::vec3 shoulderPosition;
if (!getJointPosition(shoulderJointIndex, shoulderPosition)) {
return;
}
// precomputed lengths
float scale = extractUniformScale(_scale);
float upperArmLength = geometry.joints.at(elbowJointIndex).distanceToParent * scale;
float lowerArmLength = geometry.joints.at(jointIndex).distanceToParent * scale;
// first set wrist position
glm::vec3 wristPosition = position;
glm::vec3 shoulderToWrist = wristPosition - shoulderPosition;
float distanceToWrist = glm::length(shoulderToWrist);
// prevent gimbal lock
if (distanceToWrist > upperArmLength + lowerArmLength - EPSILON) {
distanceToWrist = upperArmLength + lowerArmLength - EPSILON;
shoulderToWrist = glm::normalize(shoulderToWrist) * distanceToWrist;
wristPosition = shoulderPosition + shoulderToWrist;
}
// cosine of angle from upper arm to hand vector
float cosA = (upperArmLength * upperArmLength + distanceToWrist * distanceToWrist - lowerArmLength * lowerArmLength) /
(2 * upperArmLength * distanceToWrist);
float mid = upperArmLength * cosA;
float height = sqrt(upperArmLength * upperArmLength + mid * mid - 2 * upperArmLength * mid * cosA);
// direction of the elbow
glm::vec3 handNormal = glm::cross(rotation * glm::vec3(0.0f, 1.0f, 0.0f), shoulderToWrist); // elbow rotating with wrist
glm::vec3 relaxedNormal = glm::cross(glm::vec3(0.0f, 1.0f, 0.0f), shoulderToWrist); // elbow pointing straight down
const float NORMAL_WEIGHT = 0.5f;
glm::vec3 finalNormal = glm::mix(relaxedNormal, handNormal, NORMAL_WEIGHT);
bool rightHand = (jointIndex == geometry.rightHandJointIndex);
if (rightHand ? (finalNormal.y > 0.0f) : (finalNormal.y < 0.0f)) {
finalNormal.y = 0.0f; // dont allow elbows to point inward (y is vertical axis)
}
glm::vec3 tangent = glm::normalize(glm::cross(shoulderToWrist, finalNormal));
// ik solution
glm::vec3 elbowPosition = shoulderPosition + glm::normalize(shoulderToWrist) * mid - tangent * height;
glm::vec3 forwardVector(rightHand ? -1.0f : 1.0f, 0.0f, 0.0f);
glm::quat shoulderRotation = rotationBetween(forwardVector, elbowPosition - shoulderPosition);
_rig->setJointRotationInBindFrame(shoulderJointIndex, shoulderRotation, PALM_PRIORITY);
_rig->setJointRotationInBindFrame(elbowJointIndex,
rotationBetween(shoulderRotation * forwardVector, wristPosition - elbowPosition) *
shoulderRotation, PALM_PRIORITY);
_rig->setJointRotationInBindFrame(jointIndex, rotation, PALM_PRIORITY);
}
bool SkeletonModel::getLeftHandPosition(glm::vec3& position) const {
return getJointPositionInWorldFrame(getLeftHandJointIndex(), position);
}
bool SkeletonModel::getRightHandPosition(glm::vec3& position) const {
return getJointPositionInWorldFrame(getRightHandJointIndex(), position);
}
bool SkeletonModel::restoreLeftHandPosition(float fraction, float priority) {
return restoreJointPosition(getLeftHandJointIndex(), fraction, priority);
}
bool SkeletonModel::getLeftShoulderPosition(glm::vec3& position) const {
return getJointPositionInWorldFrame(getLastFreeJointIndex(getLeftHandJointIndex()), position);
}
float SkeletonModel::getLeftArmLength() const {
return getLimbLength(getLeftHandJointIndex());
}
bool SkeletonModel::restoreRightHandPosition(float fraction, float priority) {
return restoreJointPosition(getRightHandJointIndex(), fraction, priority);
}
bool SkeletonModel::getRightShoulderPosition(glm::vec3& position) const {
return getJointPositionInWorldFrame(getLastFreeJointIndex(getRightHandJointIndex()), position);
}
float SkeletonModel::getRightArmLength() const {
return getLimbLength(getRightHandJointIndex());
}
bool SkeletonModel::getHeadPosition(glm::vec3& headPosition) const {
return isActive() && getJointPositionInWorldFrame(_geometry->getFBXGeometry().headJointIndex, headPosition);
}
bool SkeletonModel::getNeckPosition(glm::vec3& neckPosition) const {
return isActive() && getJointPositionInWorldFrame(_geometry->getFBXGeometry().neckJointIndex, neckPosition);
}
bool SkeletonModel::getNeckParentRotationFromDefaultOrientation(glm::quat& neckParentRotation) const {
if (!isActive()) {
return false;
}
const FBXGeometry& geometry = _geometry->getFBXGeometry();
if (geometry.neckJointIndex == -1) {
return false;
}
int parentIndex = geometry.joints.at(geometry.neckJointIndex).parentIndex;
glm::quat worldFrameRotation;
bool success = getJointRotationInWorldFrame(parentIndex, worldFrameRotation);
if (success) {
neckParentRotation = worldFrameRotation * _rig->getJointState(parentIndex).getFBXJoint().inverseDefaultRotation;
}
return success;
}
bool SkeletonModel::getEyeModelPositions(glm::vec3& firstEyePosition, glm::vec3& secondEyePosition) const {
if (!isActive()) {
return false;
}
const FBXGeometry& geometry = _geometry->getFBXGeometry();
if (getJointPosition(geometry.leftEyeJointIndex, firstEyePosition) &&
getJointPosition(geometry.rightEyeJointIndex, secondEyePosition)) {
return true;
}
// no eye joints; try to estimate based on head/neck joints
glm::vec3 neckPosition, headPosition;
if (getJointPosition(geometry.neckJointIndex, neckPosition) &&
getJointPosition(geometry.headJointIndex, headPosition)) {
const float EYE_PROPORTION = 0.6f;
glm::vec3 baseEyePosition = glm::mix(neckPosition, headPosition, EYE_PROPORTION);
glm::quat headRotation;
getJointRotation(geometry.headJointIndex, headRotation);
const float EYES_FORWARD = 0.25f;
const float EYE_SEPARATION = 0.1f;
float headHeight = glm::distance(neckPosition, headPosition);
firstEyePosition = baseEyePosition + headRotation * glm::vec3(EYE_SEPARATION, 0.0f, EYES_FORWARD) * headHeight;
secondEyePosition = baseEyePosition + headRotation * glm::vec3(-EYE_SEPARATION, 0.0f, EYES_FORWARD) * headHeight;
return true;
}
return false;
}
bool SkeletonModel::getEyePositions(glm::vec3& firstEyePosition, glm::vec3& secondEyePosition) const {
if (getEyeModelPositions(firstEyePosition, secondEyePosition)) {
firstEyePosition = _translation + _rotation * firstEyePosition;
secondEyePosition = _translation + _rotation * secondEyePosition;
return true;
}
return false;
}
glm::vec3 SkeletonModel::getDefaultEyeModelPosition() const {
return _owningAvatar->getScale() * _defaultEyeModelPosition;
}
float DENSITY_OF_WATER = 1000.0f; // kg/m^3
float MIN_JOINT_MASS = 1.0f;
float VERY_BIG_MASS = 1.0e6f;
// virtual
void SkeletonModel::buildShapes() {
if (_geometry == NULL || _rig->jointStatesEmpty()) {
return;
}
const FBXGeometry& geometry = _geometry->getFBXGeometry();
if (geometry.joints.isEmpty() || geometry.rootJointIndex == -1) {
// rootJointIndex == -1 if the avatar model has no skeleton
return;
}
computeBoundingShape(geometry);
}
void SkeletonModel::computeBoundingShape(const FBXGeometry& geometry) {
// compute default joint transforms
int numStates = _rig->getJointStateCount();
QVector<glm::mat4> transforms;
transforms.fill(glm::mat4(), numStates);
// compute bounding box that encloses all shapes
Extents totalExtents;
totalExtents.reset();
totalExtents.addPoint(glm::vec3(0.0f));
for (int i = 0; i < numStates; i++) {
// compute the default transform of this joint
const JointState& state = _rig->getJointState(i);
const FBXJoint& joint = state.getFBXJoint();
int parentIndex = joint.parentIndex;
if (parentIndex == -1) {
transforms[i] = _rig->getJointTransform(i);
} else {
glm::quat modifiedRotation = joint.preRotation * joint.rotation * joint.postRotation;
transforms[i] = transforms[parentIndex] * glm::translate(joint.translation)
* joint.preTransform * glm::mat4_cast(modifiedRotation) * joint.postTransform;
}
// Each joint contributes a sphere at its position
glm::vec3 axis(joint.boneRadius);
glm::vec3 jointPosition = extractTranslation(transforms[i]);
totalExtents.addPoint(jointPosition + axis);
totalExtents.addPoint(jointPosition - axis);
}
// compute bounding shape parameters
// NOTE: we assume that the longest side of totalExtents is the yAxis...
glm::vec3 diagonal = totalExtents.maximum - totalExtents.minimum;
// ... and assume the radius is half the RMS of the X and Z sides:
_boundingCapsuleRadius = 0.5f * sqrtf(0.5f * (diagonal.x * diagonal.x + diagonal.z * diagonal.z));
_boundingCapsuleHeight = diagonal.y - 2.0f * _boundingCapsuleRadius;
glm::vec3 rootPosition = _rig->getJointState(geometry.rootJointIndex).getPosition();
_boundingCapsuleLocalOffset = 0.5f * (totalExtents.maximum + totalExtents.minimum) - rootPosition;
_boundingRadius = 0.5f * glm::length(diagonal);
}
void SkeletonModel::renderBoundingCollisionShapes(gpu::Batch& batch, float alpha) {
const int BALL_SUBDIVISIONS = 10;
auto geometryCache = DependencyManager::get<GeometryCache>();
auto deferredLighting = DependencyManager::get<DeferredLightingEffect>();
Transform transform; // = Transform();
// draw a blue sphere at the capsule top point
glm::vec3 topPoint = _translation + _boundingCapsuleLocalOffset + (0.5f * _boundingCapsuleHeight) * glm::vec3(0.0f, 1.0f, 0.0f);
transform.setTranslation(topPoint);
batch.setModelTransform(transform);
deferredLighting->bindSimpleProgram(batch);
geometryCache->renderSphere(batch, _boundingCapsuleRadius, BALL_SUBDIVISIONS, BALL_SUBDIVISIONS,
glm::vec4(0.6f, 0.6f, 0.8f, alpha));
// draw a yellow sphere at the capsule bottom point
glm::vec3 bottomPoint = topPoint - glm::vec3(0.0f, -_boundingCapsuleHeight, 0.0f);
glm::vec3 axis = topPoint - bottomPoint;
transform.setTranslation(bottomPoint);
batch.setModelTransform(transform);
deferredLighting->bindSimpleProgram(batch);
geometryCache->renderSphere(batch, _boundingCapsuleRadius, BALL_SUBDIVISIONS, BALL_SUBDIVISIONS,
glm::vec4(0.8f, 0.8f, 0.6f, alpha));
// draw a green cylinder between the two points
glm::vec3 origin(0.0f);
Avatar::renderJointConnectingCone(batch, origin, axis, _boundingCapsuleRadius, _boundingCapsuleRadius,
glm::vec4(0.6f, 0.8f, 0.6f, alpha));
}
bool SkeletonModel::hasSkeleton() {
return isActive() ? _geometry->getFBXGeometry().rootJointIndex != -1 : false;
}
void SkeletonModel::onInvalidate() {
}