overte-HifiExperiments/libraries/animation/src/SwingTwistConstraint.cpp
2015-08-11 08:17:54 -07:00

128 lines
4.5 KiB
C++

//
// SwingTwistConstraint.cpp
//
// Copyright 2015 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include "SwingTwistConstraint.h"
#include <algorithm>
#include <math.h>
#include <GeometryUtil.h>
#include <NumericalConstants.h>
const float MIN_MINDOT = -0.999f;
const float MAX_MINDOT = 1.0f;
SwingTwistConstraint::SwingLimitFunction::SwingLimitFunction() {
setCone(PI);
}
void SwingTwistConstraint::SwingLimitFunction::setCone(float maxAngle) {
_minDots.clear();
float minDot = glm::clamp(maxAngle, MIN_MINDOT, MAX_MINDOT);
_minDots.push_back(minDot);
// push the first value to the back to establish cyclic boundary conditions
_minDots.push_back(minDot);
}
void SwingTwistConstraint::SwingLimitFunction::setMinDots(const std::vector<float>& minDots) {
int numDots = minDots.size();
_minDots.clear();
_minDots.reserve(numDots);
for (int i = 0; i < numDots; ++i) {
_minDots.push_back(glm::clamp(minDots[i], MIN_MINDOT, MAX_MINDOT));
}
// push the first value to the back to establish cyclic boundary conditions
_minDots.push_back(_minDots[0]);
}
float SwingTwistConstraint::SwingLimitFunction::getMinDot(float theta) const {
// extract the positive normalized fractional part of theta
float integerPart;
float normalizedTheta = modff(theta / TWO_PI, &integerPart);
if (normalizedTheta < 0.0f) {
normalizedTheta += 1.0f;
}
// interpolate between the two nearest points in the cycle
float fractionPart = modff(normalizedTheta * (float)(_minDots.size() - 1), &integerPart);
int i = (int)(integerPart);
int j = (i + 1) % _minDots.size();
return _minDots[i] * (1.0f - fractionPart) + _minDots[j] * fractionPart;
}
SwingTwistConstraint::SwingTwistConstraint() :
_swingLimitFunction(),
_referenceRotation(),
_minTwist(-PI),
_maxTwist(PI)
{
}
void SwingTwistConstraint::setSwingLimits(std::vector<float> minDots) {
_swingLimitFunction.setMinDots(minDots);
}
void SwingTwistConstraint::setTwistLimits(float minTwist, float maxTwist) {
// NOTE: min/maxTwist angles should be in the range [-PI, PI]
_minTwist = glm::min(minTwist, maxTwist);
_maxTwist = glm::max(minTwist, maxTwist);
}
bool SwingTwistConstraint::apply(glm::quat& rotation) const {
// decompose the rotation into first twist about yAxis, then swing about something perp
const glm::vec3 yAxis(0.0f, 1.0f, 0.0f);
// NOTE: rotation = postRotation * referenceRotation
glm::quat postRotation = rotation * glm::inverse(_referenceRotation);
glm::quat swingRotation, twistRotation;
swingTwistDecomposition(postRotation, yAxis, swingRotation, twistRotation);
// NOTE: postRotation = swingRotation * twistRotation
// compute twistAngle
float twistAngle = 2.0f * acosf(fabsf(twistRotation.w));
const glm::vec3 xAxis = glm::vec3(1.0f, 0.0f, 0.0f);
glm::vec3 twistedX = twistRotation * xAxis;
twistAngle *= copysignf(1.0f, glm::dot(glm::cross(xAxis, twistedX), yAxis));
// clamp twistAngle
float clampedTwistAngle = glm::clamp(twistAngle, _minTwist, _maxTwist);
bool twistWasClamped = (twistAngle != clampedTwistAngle);
// clamp the swing
// The swingAxis is always perpendicular to the reference axis (yAxis in the constraint's frame).
glm::vec3 swungY = swingRotation * yAxis;
glm::vec3 swingAxis = glm::cross(yAxis, swungY);
bool swingWasClamped = false;
float axisLength = glm::length(swingAxis);
if (axisLength > EPSILON) {
// The limit of swing is a function of "theta" which can be computed from the swingAxis
// (which is in the constraint's ZX plane).
float theta = atan2f(-swingAxis.z, swingAxis.x);
float minDot = _swingLimitFunction.getMinDot(theta);
if (glm::dot(swungY, yAxis) < minDot) {
// The swing limits are violated so we use the maxAngle to supply a new rotation.
float maxAngle = acosf(minDot);
if (minDot < 0.0f) {
maxAngle = PI - maxAngle;
}
swingAxis /= axisLength;
swingRotation = glm::angleAxis(maxAngle, swingAxis);
swingWasClamped = true;
}
}
if (swingWasClamped || twistWasClamped) {
twistRotation = glm::angleAxis(clampedTwistAngle, yAxis);
rotation = swingRotation * twistRotation * _referenceRotation;
return true;
}
return false;
}