overte-HifiExperiments/libraries/physics/src/MassProperties.cpp
2015-03-04 08:51:44 +05:30

236 lines
No EOL
8 KiB
C++

//
// MassProperties.cpp
// libraries/physics/src
//
// Created by Virendra Singh 2015.02.28
// Copyright 2014 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include "MassProperties.h"
using namespace massproperties;
Tetrahedron::Tetrahedron(const Vertex p1, const Vertex p2, const Vertex p3, const Vertex p4) :\
_w(p1),
_x(p2),
_y(p3),
_z(p4){
computeVolume();
computeInertia();
}
Tetrahedron::~Tetrahedron(){
}
Vertex Tetrahedron::getX() const{
return _x;
}
Vertex Tetrahedron::getY() const{
return _y;
}
Vertex Tetrahedron::getZ() const{
return _z;
}
Vertex Tetrahedron::getw() const{
return _w;
}
Vertex Tetrahedron::getCentroid() const{
Vertex com;
com.x = (_x.x + _y.x + _z.x + _w.x) / 4.0f;
com.y = (_x.y + _y.y + _z.y + _w.y) / 4.0f;
com.z = (_x.z + _y.z + _z.z + _w.z) / 4.0f;
return com;
}
vector<double> Tetrahedron::getVolumeAndInertia() const{
return _volumeAndInertia;
}
void Tetrahedron::computeVolume(){
glm::mat4 tet = { glm::vec4(_x.x, _y.x, _z.x, _w.x), glm::vec4(_x.y, _y.y, _z.y, _w.y), glm::vec4(_x.z, _y.z, _z.z, _w.z),
glm::vec4(1.0f, 1.0f, 1.0f, 1.0f) };
_volume = glm::determinant(tet) / 6.0f;
_volumeAndInertia.push_back(_volume);
}
void Tetrahedron::computeInertia(){
//centroid is used for calculating inertia tensor relative to center of mass.
// translate the tetrahedron to its center of mass using P = P - centroid
Vertex com = getCentroid();
Vertex p0 = _w - com;
Vertex p1 = _x - com;
Vertex p2 = _y - com;
Vertex p3 = _z - com;
//Calculate inertia tensor based on Tonon's Formulae given in the paper mentioned below.
//http://docsdrive.com/pdfs/sciencepublications/jmssp/2005/8-11.pdf
//Explicit exact formulas for the 3-D tetrahedron inertia tensor in terms of its vertex coordinates - F.Tonon
double inertia_a = (_volume * 6.0 / 60.0) * (
p0.y*p0.y + p0.y*p1.y + p0.y*p2.y + p0.y*p3.y +
p1.y*p1.y + p1.y*p2.y + p1.y*p3.y +
p2.y*p2.y + p2.y*p3.y +
p3.y*p3.y +
p0.z*p0.z + p0.z*p1.z + p0.z*p2.z + p0.z*p3.z +
p1.z*p1.z + p1.z*p2.z + p1.z*p3.z +
p2.z*p2.z + p2.z*p3.z +
p3.z*p3.z);
_volumeAndInertia.push_back(inertia_a);
double inertia_b = (_volume * 6.0 / 60.0) * (
p0.x*p0.x + p0.x*p1.x + p0.x*p2.x + p0.x*p3.x +
p1.x*p1.x + p1.x*p2.x + p1.x*p3.x +
p2.x*p2.x + p2.x*p3.x +
p3.x*p3.x +
p0.z*p0.z + p0.z*p1.z + p0.z*p2.z + p0.z*p3.z +
p1.z*p1.z + p1.z*p2.z + p1.z*p3.z +
p2.z*p2.z + p2.z*p3.z +
p3.z*p3.z);
_volumeAndInertia.push_back(inertia_b);
double inertia_c = (_volume * 6.0 / 60.0) * (
p0.x*p0.x + p0.x*p1.x + p0.x*p2.x + p0.x*p3.x +
p1.x*p1.x + p1.x*p2.x + p1.x*p3.x +
p2.x*p2.x + p2.x*p3.x +
p3.x*p3.x +
p0.y*p0.y + p0.y*p1.y + p0.y*p2.y + p0.y*p3.y +
p1.y*p1.y + p1.y*p2.y + p1.y*p3.y +
p2.y*p2.y + p2.y*p3.y +
p3.y*p3.y);
_volumeAndInertia.push_back(inertia_c);
double inertia_aa = (_volume * 6.0 / 120.0) * (2.0 * (p0.y*p0.z + p1.y*p1.z + p2.y*p2.z + p3.y*p3.z) +
p0.y*p1.z + p0.y*p2.z + p0.y*p3.z +
p1.y*p0.z + p1.y*p2.z + p1.y*p3.z +
p2.y*p0.z + p2.y*p1.z + p2.y*p3.z +
p3.y*p0.z + p3.y*p1.z + p3.y*p2.z);
_volumeAndInertia.push_back(inertia_aa);
double inertia_bb = (_volume * 6.0 / 120.0) * (2.0 * (p0.x*p0.z + p1.x*p1.z + p2.x*p2.z + p3.x*p3.z) +
p0.x*p1.z + p0.x*p2.z + p0.x*p3.z +
p1.x*p0.z + p1.x*p2.z + p1.x*p3.z +
p2.x*p0.z + p2.x*p1.z + p2.x*p3.z +
p3.x*p0.z + p3.x*p1.z + p3.x*p2.z);
_volumeAndInertia.push_back(inertia_bb);
double inertia_cc = (_volume * 6.0 / 120.0) * (2.0 * (p0.x*p0.y + p1.x*p1.y + p2.x*p2.y + p3.x*p3.y) +
p0.x*p1.y + p0.x*p2.y + p0.x*p3.y +
p1.x*p0.y + p1.x*p2.y + p1.x*p3.y +
p2.x*p0.y + p2.x*p1.y + p2.x*p3.y +
p3.x*p0.y + p3.x*p1.y + p3.x*p2.y);
_volumeAndInertia.push_back(inertia_cc);
}
//class to compute volume, mass, center of mass, and inertia tensor of a mesh.
//origin is the default reference point for generating the tetrahedron from each triangle of the mesh. We can provide
//another reference point by passing it as 3rd parameter to the constructor
MassProperties::MassProperties(vector<Vertex> *vertices, Triangle *triangles, Vertex referencepoint = glm::vec3(0.0,0.0,0.0)):\
_vertices(vertices),
_triangles(triangles),
_referencePoint(referencepoint),
_trianglesCount(0),
_tetrahedraCount(0),
_verticesCount(0),
_centerOfMass(glm::vec3(0.0, 0.0, 0.0)){
if (_triangles){
_trianglesCount = _triangles->size() / 3;
}
if (_vertices){
_verticesCount = _vertices->size();
}
generateTetrahedra();
}
MassProperties::~MassProperties(){
if (_vertices){
_vertices->clear();
}
if (_triangles){
_triangles->clear();
}
}
void MassProperties::generateTetrahedra() {
for (int i = 0; i < _trianglesCount * 3; i += 3){
Vertex p1 = _vertices->at(_triangles->at(i));
Vertex p2 = _vertices->at(_triangles->at(i + 1));
Vertex p3 = _vertices->at(_triangles->at(i + 2));
Tetrahedron t(_referencePoint, p1, p2, p3);
_tetrahedra.push_back(t);
}
}
int MassProperties::getTriangleCount() const{
return _trianglesCount;
}
int MassProperties::getVerticesCount() const{
return _verticesCount;
}
Vertex MassProperties::getCenterOfMass() const{
return _centerOfMass;
}
int MassProperties::getTetrahedraCount() const{
return _tetrahedra.size();
}
vector<Tetrahedron> MassProperties::getTetrahedra() const{
return _tetrahedra;
}
vector<double> MassProperties::getMassProperties(){
vector<double> volumeAndInertia;
double volume = 0.0;
glm::vec3 centerOfMass;
glm::mat3 globalInertia(0.0);
glm::mat3 globalProductInertia(0.0);
//Translate accumulated center of mass from each tetrahedron to mesh center of mass using parallel axis theorem
for(Tetrahedron tet : _tetrahedra){
vector<double> tetMassProperties = tet.getVolumeAndInertia();
volume += tetMassProperties.at(0); //volume
centerOfMass += tet.getCentroid() * (float)tetMassProperties.at(0);
}
if (volume != 0){
_centerOfMass = (centerOfMass / (float)volume);
}
//Translate the moment of inertia from each tetrahedron to mesh center of mass using parallel axis theorem
for(Tetrahedron tet : _tetrahedra){
vector<double> tetMassProperties = tet.getVolumeAndInertia();
glm::mat3 identity;
glm::vec3 diff = _centerOfMass - tet.getCentroid();
float diffDot = glm::dot(diff, diff);
glm::mat3 outerDiff = glm::outerProduct(diff, diff);
//3x3 of local inertia tensors of each tetrahedron. Inertia tensors are the diagonal elements
glm::mat3 localMomentInertia = { Vertex(tetMassProperties.at(1), 0.0f, 0.0f), Vertex(0.0f, tetMassProperties.at(2), 0.0f),
Vertex(0.0f, 0.0f, tetMassProperties.at(3)) };
glm::mat3 localProductInertia = { Vertex(tetMassProperties.at(4), 0.0f, 0.0f), Vertex(0.0f, tetMassProperties.at(5), 0.0f),
Vertex(0.0f, 0.0f, tetMassProperties.at(6)) };
//Parallel axis theorem J = I * m[(R.R)*Identity - RxR] where x is outer cross product
globalInertia += localMomentInertia + (float)tetMassProperties.at(0) * ((diffDot*identity) - outerDiff);
globalProductInertia += localProductInertia + (float)tetMassProperties.at(0) * ((diffDot * identity) - outerDiff);
}
volumeAndInertia.push_back(volume);
volumeAndInertia.push_back(globalInertia[0][0]);
volumeAndInertia.push_back(globalInertia[1][1]);
volumeAndInertia.push_back(globalInertia[2][2]);
volumeAndInertia.push_back(globalProductInertia[0][0]);
volumeAndInertia.push_back(globalProductInertia[1][1]);
volumeAndInertia.push_back(globalProductInertia[2][2]);
return volumeAndInertia;
}