overte-AleziaKurdis/libraries/physics/src/ThreadSafeDynamicsWorld.cpp

219 lines
10 KiB
C++

/*
* Bullet Continuous Collision Detection and Physics Library
* Copyright (c) 2003-2009 Erwin Coumans http://bulletphysics.org
*
* This software is provided 'as-is', without any express or implied warranty.
* In no event will the authors be held liable for any damages arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it freely,
* subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*
* Copied and modified from btDiscreteDynamicsWorld.cpp by AndrewMeadows on 2014.11.12.
* */
#include "ThreadSafeDynamicsWorld.h"
#include <LinearMath/btQuickprof.h>
#include "Profile.h"
ThreadSafeDynamicsWorld::ThreadSafeDynamicsWorld(
btDispatcher* dispatcher,
btBroadphaseInterface* pairCache,
btConstraintSolver* constraintSolver,
btCollisionConfiguration* collisionConfiguration)
: btDiscreteDynamicsWorld(dispatcher, pairCache, constraintSolver, collisionConfiguration) {
}
int ThreadSafeDynamicsWorld::stepSimulationWithSubstepCallback(btScalar timeStep, int maxSubSteps,
btScalar fixedTimeStep, SubStepCallback onSubStep) {
DETAILED_PROFILE_RANGE(simulation_physics, "stepWithCB");
BT_PROFILE("stepSimulationWithSubstepCallback");
int subSteps = 0;
if (maxSubSteps) {
//fixed timestep with interpolation
m_fixedTimeStep = fixedTimeStep;
m_localTime += timeStep;
if (m_localTime >= fixedTimeStep)
{
subSteps = int( m_localTime / fixedTimeStep);
m_localTime -= subSteps * fixedTimeStep;
}
} else {
//variable timestep
fixedTimeStep = timeStep;
m_localTime = m_latencyMotionStateInterpolation ? 0 : timeStep;
m_fixedTimeStep = 0;
if (btFuzzyZero(timeStep))
{
subSteps = 0;
maxSubSteps = 0;
} else
{
subSteps = 1;
maxSubSteps = 1;
}
}
if (subSteps) {
//clamp the number of substeps, to prevent simulation grinding spiralling down to a halt
int clampedSimulationSteps = (subSteps > maxSubSteps)? maxSubSteps : subSteps;
_numSubsteps += clampedSimulationSteps;
ObjectMotionState::setWorldSimulationStep(_numSubsteps);
saveKinematicState(fixedTimeStep*clampedSimulationSteps);
{
DETAILED_PROFILE_RANGE(simulation_physics, "applyGravity");
BT_PROFILE("applyGravity");
applyGravity();
}
for (int i=0;i<clampedSimulationSteps;i++) {
DETAILED_PROFILE_RANGE(simulation_physics, "substep");
internalSingleStepSimulation(fixedTimeStep);
onSubStep();
}
}
// NOTE: We do NOT call synchronizeMotionStates() after each substep (to avoid multiple locks on the
// object data outside of the physics engine). A consequence of this is that the transforms of the
// external objects only ever update at the end of the full step.
// NOTE: We do NOT call synchronizeMotionStates() here. Instead it is called by an external class
// that knows how to lock threads correctly.
clearForces();
return subSteps;
}
// call this instead of non-virtual btDiscreteDynamicsWorld::synchronizeSingleMotionState()
void ThreadSafeDynamicsWorld::synchronizeMotionState(btRigidBody* body) {
btAssert(body);
btAssert(body->getMotionState());
if (body->isKinematicObject()) {
ObjectMotionState* objectMotionState = static_cast<ObjectMotionState*>(body->getMotionState());
if (objectMotionState->hasInternalKinematicChanges()) {
// ACTION_CAN_CONTROL_KINEMATIC_OBJECT_HACK:
// This is a special case where the kinematic motion has been updated by an Action
// so we supply the body's current transform to the MotionState,
// but we DON'T clear the internalKinematicChanges bit here because
// objectMotionState.getWorldTransform() will use and clear it later
body->getMotionState()->setWorldTransform(body->getWorldTransform());
}
return;
}
btTransform interpolatedTransform;
btTransformUtil::integrateTransform(body->getInterpolationWorldTransform(),
body->getInterpolationLinearVelocity(),body->getInterpolationAngularVelocity(),
(m_latencyMotionStateInterpolation && m_fixedTimeStep) ? m_localTime - m_fixedTimeStep : m_localTime*body->getHitFraction(),
interpolatedTransform);
body->getMotionState()->setWorldTransform(interpolatedTransform);
}
void ThreadSafeDynamicsWorld::synchronizeMotionStates() {
PROFILE_RANGE(simulation_physics, "SyncMotionStates");
BT_PROFILE("syncMotionStates");
_changedMotionStates.clear();
// NOTE: m_synchronizeAllMotionStates is 'false' by default for optimization.
// See PhysicsEngine::init() where we call _dynamicsWorld->setForceUpdateAllAabbs(false)
if (m_synchronizeAllMotionStates) {
//iterate over all collision objects
for (int i=0;i<m_collisionObjects.size();i++) {
btCollisionObject* colObj = m_collisionObjects[i];
btRigidBody* body = btRigidBody::upcast(colObj);
if (body && body->getMotionState()) {
synchronizeMotionState(body);
_changedMotionStates.push_back(static_cast<ObjectMotionState*>(body->getMotionState()));
}
}
} else {
//iterate over all active rigid bodies
// TODO? if this becomes a performance bottleneck we could derive our own SimulationIslandManager
// that remembers a list of objects deactivated last step
_activeStates.clear();
_deactivatedStates.clear();
for (int i=0;i<m_nonStaticRigidBodies.size();i++) {
btRigidBody* body = m_nonStaticRigidBodies[i];
ObjectMotionState* motionState = static_cast<ObjectMotionState*>(body->getMotionState());
if (motionState) {
if (body->isActive()) {
synchronizeMotionState(body);
_changedMotionStates.push_back(motionState);
_activeStates.insert(motionState);
} else if (_lastActiveStates.find(motionState) != _lastActiveStates.end()) {
// this object was active last frame but is no longer
_deactivatedStates.push_back(motionState);
}
}
}
}
_activeStates.swap(_lastActiveStates);
}
void ThreadSafeDynamicsWorld::saveKinematicState(btScalar timeStep) {
DETAILED_PROFILE_RANGE(simulation_physics, "saveKinematicState");
BT_PROFILE("saveKinematicState");
for (int i=0;i<m_nonStaticRigidBodies.size();i++) {
btRigidBody* body = m_nonStaticRigidBodies[i];
if (body && body->isKinematicObject() && body->getActivationState() != ISLAND_SLEEPING) {
if (body->getMotionState()) {
btMotionState* motionState = body->getMotionState();
ObjectMotionState* objectMotionState = static_cast<ObjectMotionState*>(motionState);
objectMotionState->saveKinematicState(timeStep);
} else {
body->saveKinematicState(timeStep);
}
}
}
}
void ThreadSafeDynamicsWorld::drawConnectedSpheres(btIDebugDraw* drawer, btScalar radius1, btScalar radius2, const btVector3& position1, const btVector3& position2, const btVector3& color) {
float stepRadians = PI/6.0f; // 30 degrees
btVector3 direction = position2 - position1;
btVector3 xAxis = direction.cross(btVector3(0.0f, 1.0f, 0.0f));
xAxis = xAxis.length() < EPSILON ? btVector3(1.0f, 0.0f, 0.0f) : xAxis.normalize();
btVector3 zAxis = xAxis.cross(btVector3(0.0f, 1.0f, 0.0f));
zAxis = (direction.length2() < EPSILON || direction.normalize().getY() < EPSILON) ? btVector3(0.0f, 1.0f, 0.0f) : zAxis.normalize();
float fullCircle = 2.0f * PI;
for (float i = 0; i < fullCircle; i += stepRadians) {
float x1 = btSin(btScalar(i)) * radius1;
float z1 = btCos(btScalar(i)) * radius1;
float x2 = btSin(btScalar(i)) * radius2;
float z2 = btCos(btScalar(i)) * radius2;
btVector3 addVector1 = xAxis * x1 + zAxis * z1;
btVector3 addVector2 = xAxis * x2 + zAxis * z2;
drawer->drawLine(position1 + addVector1, position2 + addVector2, color);
}
}
void ThreadSafeDynamicsWorld::debugDrawObject(const btTransform& worldTransform, const btCollisionShape* shape, const btVector3& color) {
btCollisionWorld::debugDrawObject(worldTransform, shape, color);
if (shape->getShapeType() == MULTI_SPHERE_SHAPE_PROXYTYPE) {
const btMultiSphereShape* multiSphereShape = static_cast<const btMultiSphereShape*>(shape);
for (int i = multiSphereShape->getSphereCount() - 1; i >= 0; i--) {
btTransform sphereTransform1, sphereTransform2;
sphereTransform1.setIdentity();
sphereTransform2.setIdentity();
int sphereIndex1 = i;
int sphereIndex2 = i > 0 ? i - 1 : multiSphereShape->getSphereCount() - 1;
sphereTransform1.setOrigin(multiSphereShape->getSpherePosition(sphereIndex1));
sphereTransform2.setOrigin(multiSphereShape->getSpherePosition(sphereIndex2));
sphereTransform1 = worldTransform * sphereTransform1;
sphereTransform2 = worldTransform * sphereTransform2;
getDebugDrawer()->drawSphere(multiSphereShape->getSphereRadius(sphereIndex1), sphereTransform1, color);
drawConnectedSpheres(getDebugDrawer(), multiSphereShape->getSphereRadius(sphereIndex1), multiSphereShape->getSphereRadius(sphereIndex2), sphereTransform1.getOrigin(), sphereTransform2.getOrigin(), color);
}
} else {
btCollisionWorld::debugDrawObject(worldTransform, shape, color);
}
}