content/hifi-content/caitlyn/production/shaders/stargateWater.fs
2022-02-13 22:19:19 +01:00

135 lines
No EOL
3.7 KiB
GLSL

//noise functions adapted from Keijiro HLSL Simplex Noise
vec3 mod289(vec3 x)
{
return x - floor(x / 289.0) * 289.0;
}
vec4 mod289(vec4 x)
{
return x - floor(x / 289.0) * 289.0;
}
vec4 permute(vec4 x)
{
return mod289((x * 34.0 + 1.0) * x);
}
vec4 taylorInvSqrt(vec4 r)
{
return 1.79284291400159 - r * 0.85373472095314;
}
vec3 snoise_grad(vec3 v)
{
const vec2 C = vec2(1.0 / 6.0, 1.0 / 3.0);
// First corner
vec3 i = floor(v + dot(v, C.yyy));
vec3 x0 = v - i + dot(i, C.xxx);
// Other corners
vec3 g = step(x0.yzx, x0.xyz);
vec3 l = 1.0 - g;
vec3 i1 = min(g.xyz, l.zxy);
vec3 i2 = max(g.xyz, l.zxy);
// x1 = x0 - i1 + 1.0 * C.xxx;
// x2 = x0 - i2 + 2.0 * C.xxx;
// x3 = x0 - 1.0 + 3.0 * C.xxx;
vec3 x1 = x0 - i1 + C.xxx;
vec3 x2 = x0 - i2 + C.yyy;
vec3 x3 = x0 - 0.5;
// Permutations
i = mod289(i); // Avoid truncation effects in permutation
vec4 p =
permute(permute(permute(vec4(i.z) + vec4(0.0, i1.z, i2.z, 1.0))
+ vec4(i.y) + vec4(0.0, i1.y, i2.y, 1.0))
+ vec4(i.x) + vec4(0.0, i1.x, i2.x, 1.0));
// Gradients: 7x7 points over a square, mapped onto an octahedron.
// The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294)
vec4 j = p - 49.0 * floor(p / 49.0); // mod(p,7*7)
vec4 x_ = floor(j / 7.0);
vec4 y_ = floor(j - 7.0 * x_); // mod(j,N)
vec4 x = (x_ * 2.0 + 0.5) / 7.0 - 1.0;
vec4 y = (y_ * 2.0 + 0.5) / 7.0 - 1.0;
vec4 h = 1.0 - abs(x) - abs(y);
vec4 b0 = vec4(x.xy, y.xy);
vec4 b1 = vec4(x.zw, y.zw);
//float4 s0 = float4(lessThan(b0, 0.0)) * 2.0 - 1.0;
//float4 s1 = float4(lessThan(b1, 0.0)) * 2.0 - 1.0;
vec4 s0 = vec4(floor(b0) * 2.0 + 1.0);
vec4 s1 = vec4(floor(b1) * 2.0 + 1.0);
vec4 sh = -step(h, vec4(0.0));
vec4 a0 = b0.xzyw + s0.xzyw * sh.xxyy;
vec4 a1 = b1.xzyw + s1.xzyw * sh.zzww;
vec3 g0 = vec3(a0.xy, h.x);
vec3 g1 = vec3(a0.zw, h.y);
vec3 g2 = vec3(a1.xy, h.z);
vec3 g3 = vec3(a1.zw, h.w);
// Normalise gradients
vec4 norm = taylorInvSqrt(vec4(dot(g0, g0), dot(g1, g1), dot(g2, g2), dot(g3, g3)));
g0 *= norm.x;
g1 *= norm.y;
g2 *= norm.z;
g3 *= norm.w;
// Compute gradient of noise function at P
vec4 m = max(0.6 - vec4(dot(x0, x0), dot(x1, x1), dot(x2, x2), dot(x3, x3)), 0.0);
vec4 m2 = m * m;
vec4 m3 = m2 * m;
vec4 m4 = m2 * m2;
vec3 grad =
-6.0 * m3.x * x0 * dot(x0, g0) + m4.x * g0 +
-6.0 * m3.y * x1 * dot(x1, g1) + m4.y * g1 +
-6.0 * m3.z * x2 * dot(x2, g2) + m4.z * g2 +
-6.0 * m3.w * x3 * dot(x3, g3) + m4.w * g3;
return 42.0 * grad;
}
void mainImage( out vec4 fragColor, in vec2 fragCoord )
{
vec2 iResolution;
iResolution.x=7.0;
iResolution.y=7.0;
vec2 uv = fragCoord.xy / iResolution.xy;
vec3 noiseOffset = snoise_grad(vec3(uv*16.-iGlobalTime, iGlobalTime*2.));
vec3 c = vec3(clamp(1. - length((uv * 2. - 1.)*1.5+noiseOffset.xy*0.3),0.2,1.0))*2.;
c *= vec3(0.2,0.5,1.0);
c += (1.-length(uv * 2. - 1.))*0.5;
c = c+c+c+c;
c /=3.;
fragColor = vec4(c,1.0);
}
float getProceduralColors(inout vec3 diffuse, inout vec3 specular, inout float shininess)
{
vec2 position = _position.xz;
position += 0.5;
position.y = 1.0 - position.y;
vec4 pixelColor;
mainImage(pixelColor, position * iWorldScale.xz);
diffuse = pixelColor.rgb; // Return 0.0 and color in diffuse for a lit surface
// return 0.0;
specular = pixelColor.rgb; // or return 1.0 and color in specular for unlit surface.
return 1.0;
}