/** * @author zz85 / http://www.lab4games.net/zz85/blog * * Creates extruded geometry from a path shape. * * parameters = { * * curveSegments: , // number of points on the curves * steps: , // number of points for z-side extrusions / used for subdividing segements of extrude spline too * amount: , // Depth to extrude the shape * * bevelEnabled: , // turn on bevel * bevelThickness: , // how deep into the original shape bevel goes * bevelSize: , // how far from shape outline is bevel * bevelSegments: , // number of bevel layers * * extrudePath: // 3d spline path to extrude shape along. (creates Frames if .frames aren't defined) * frames: // containing arrays of tangents, normals, binormals * * material: // material index for front and back faces * extrudeMaterial: // material index for extrusion and beveled faces * uvGenerator: // object that provides UV generator functions * * } **/ THREE.ExtrudeGeometry = function ( shapes, options ) { if ( typeof( shapes ) === "undefined" ) { shapes = []; return; } THREE.Geometry.call( this ); this.type = 'ExtrudeGeometry'; shapes = shapes instanceof Array ? shapes : [ shapes ]; this.addShapeList( shapes, options ); this.computeFaceNormals(); // can't really use automatic vertex normals // as then front and back sides get smoothed too // should do separate smoothing just for sides //this.computeVertexNormals(); //console.log( "took", ( Date.now() - startTime ) ); }; THREE.ExtrudeGeometry.prototype = Object.create( THREE.Geometry.prototype ); THREE.ExtrudeGeometry.prototype.constructor = THREE.ExtrudeGeometry; THREE.ExtrudeGeometry.prototype.addShapeList = function ( shapes, options ) { var sl = shapes.length; for ( var s = 0; s < sl; s ++ ) { var shape = shapes[ s ]; this.addShape( shape, options ); } }; THREE.ExtrudeGeometry.prototype.addShape = function ( shape, options ) { var amount = options.amount !== undefined ? options.amount : 100; var bevelThickness = options.bevelThickness !== undefined ? options.bevelThickness : 6; // 10 var bevelSize = options.bevelSize !== undefined ? options.bevelSize : bevelThickness - 2; // 8 var bevelSegments = options.bevelSegments !== undefined ? options.bevelSegments : 3; var bevelEnabled = options.bevelEnabled !== undefined ? options.bevelEnabled : true; // false var curveSegments = options.curveSegments !== undefined ? options.curveSegments : 12; var steps = options.steps !== undefined ? options.steps : 1; var extrudePath = options.extrudePath; var extrudePts, extrudeByPath = false; var material = options.material; var extrudeMaterial = options.extrudeMaterial; // Use default WorldUVGenerator if no UV generators are specified. var uvgen = options.UVGenerator !== undefined ? options.UVGenerator : THREE.ExtrudeGeometry.WorldUVGenerator; var splineTube, binormal, normal, position2; if ( extrudePath ) { extrudePts = extrudePath.getSpacedPoints( steps ); extrudeByPath = true; bevelEnabled = false; // bevels not supported for path extrusion // SETUP TNB variables // Reuse TNB from TubeGeomtry for now. // TODO1 - have a .isClosed in spline? splineTube = options.frames !== undefined ? options.frames : new THREE.TubeGeometry.FrenetFrames(extrudePath, steps, false); // console.log(splineTube, 'splineTube', splineTube.normals.length, 'steps', steps, 'extrudePts', extrudePts.length); binormal = new THREE.Vector3(); normal = new THREE.Vector3(); position2 = new THREE.Vector3(); } // Safeguards if bevels are not enabled if ( ! bevelEnabled ) { bevelSegments = 0; bevelThickness = 0; bevelSize = 0; } // Variables initalization var ahole, h, hl; // looping of holes var scope = this; var shapesOffset = this.vertices.length; var shapePoints = shape.extractPoints( curveSegments ); var vertices = shapePoints.shape; var holes = shapePoints.holes; var reverse = ! THREE.Shape.Utils.isClockWise( vertices ) ; if ( reverse ) { vertices = vertices.reverse(); // Maybe we should also check if holes are in the opposite direction, just to be safe ... for ( h = 0, hl = holes.length; h < hl; h ++ ) { ahole = holes[ h ]; if ( THREE.Shape.Utils.isClockWise( ahole ) ) { holes[ h ] = ahole.reverse(); } } reverse = false; // If vertices are in order now, we shouldn't need to worry about them again (hopefully)! } var faces = THREE.Shape.Utils.triangulateShape ( vertices, holes ); /* Vertices */ var contour = vertices; // vertices has all points but contour has only points of circumference for ( h = 0, hl = holes.length; h < hl; h ++ ) { ahole = holes[ h ]; vertices = vertices.concat( ahole ); } function scalePt2 ( pt, vec, size ) { if ( ! vec ) THREE.error( "THREE.ExtrudeGeometry: vec does not exist" ); return vec.clone().multiplyScalar( size ).add( pt ); } var b, bs, t, z, vert, vlen = vertices.length, face, flen = faces.length; // Find directions for point movement function getBevelVec( inPt, inPrev, inNext ) { var EPSILON = 0.0000000001; // computes for inPt the corresponding point inPt' on a new contour // shiftet by 1 unit (length of normalized vector) to the left // if we walk along contour clockwise, this new contour is outside the old one // // inPt' is the intersection of the two lines parallel to the two // adjacent edges of inPt at a distance of 1 unit on the left side. var v_trans_x, v_trans_y, shrink_by = 1; // resulting translation vector for inPt // good reading for geometry algorithms (here: line-line intersection) // http://geomalgorithms.com/a05-_intersect-1.html var v_prev_x = inPt.x - inPrev.x, v_prev_y = inPt.y - inPrev.y; var v_next_x = inNext.x - inPt.x, v_next_y = inNext.y - inPt.y; var v_prev_lensq = ( v_prev_x * v_prev_x + v_prev_y * v_prev_y ); // check for colinear edges var colinear0 = ( v_prev_x * v_next_y - v_prev_y * v_next_x ); if ( Math.abs( colinear0 ) > EPSILON ) { // not colinear // length of vectors for normalizing var v_prev_len = Math.sqrt( v_prev_lensq ); var v_next_len = Math.sqrt( v_next_x * v_next_x + v_next_y * v_next_y ); // shift adjacent points by unit vectors to the left var ptPrevShift_x = ( inPrev.x - v_prev_y / v_prev_len ); var ptPrevShift_y = ( inPrev.y + v_prev_x / v_prev_len ); var ptNextShift_x = ( inNext.x - v_next_y / v_next_len ); var ptNextShift_y = ( inNext.y + v_next_x / v_next_len ); // scaling factor for v_prev to intersection point var sf = ( ( ptNextShift_x - ptPrevShift_x ) * v_next_y - ( ptNextShift_y - ptPrevShift_y ) * v_next_x ) / ( v_prev_x * v_next_y - v_prev_y * v_next_x ); // vector from inPt to intersection point v_trans_x = ( ptPrevShift_x + v_prev_x * sf - inPt.x ); v_trans_y = ( ptPrevShift_y + v_prev_y * sf - inPt.y ); // Don't normalize!, otherwise sharp corners become ugly // but prevent crazy spikes var v_trans_lensq = ( v_trans_x * v_trans_x + v_trans_y * v_trans_y ) if ( v_trans_lensq <= 2 ) { return new THREE.Vector2( v_trans_x, v_trans_y ); } else { shrink_by = Math.sqrt( v_trans_lensq / 2 ); } } else { // handle special case of colinear edges var direction_eq = false; // assumes: opposite if ( v_prev_x > EPSILON ) { if ( v_next_x > EPSILON ) { direction_eq = true; } } else { if ( v_prev_x < - EPSILON ) { if ( v_next_x < - EPSILON ) { direction_eq = true; } } else { if ( Math.sign(v_prev_y) == Math.sign(v_next_y) ) { direction_eq = true; } } } if ( direction_eq ) { // console.log("Warning: lines are a straight sequence"); v_trans_x = - v_prev_y; v_trans_y = v_prev_x; shrink_by = Math.sqrt( v_prev_lensq ); } else { // console.log("Warning: lines are a straight spike"); v_trans_x = v_prev_x; v_trans_y = v_prev_y; shrink_by = Math.sqrt( v_prev_lensq / 2 ); } } return new THREE.Vector2( v_trans_x / shrink_by, v_trans_y / shrink_by ); } var contourMovements = []; for ( var i = 0, il = contour.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) { if ( j === il ) j = 0; if ( k === il ) k = 0; // (j)---(i)---(k) // console.log('i,j,k', i, j , k) contourMovements[ i ] = getBevelVec( contour[ i ], contour[ j ], contour[ k ] ); } var holesMovements = [], oneHoleMovements, verticesMovements = contourMovements.concat(); for ( h = 0, hl = holes.length; h < hl; h ++ ) { ahole = holes[ h ]; oneHoleMovements = []; for ( i = 0, il = ahole.length, j = il - 1, k = i + 1; i < il; i ++, j ++, k ++ ) { if ( j === il ) j = 0; if ( k === il ) k = 0; // (j)---(i)---(k) oneHoleMovements[ i ] = getBevelVec( ahole[ i ], ahole[ j ], ahole[ k ] ); } holesMovements.push( oneHoleMovements ); verticesMovements = verticesMovements.concat( oneHoleMovements ); } // Loop bevelSegments, 1 for the front, 1 for the back for ( b = 0; b < bevelSegments; b ++ ) { //for ( b = bevelSegments; b > 0; b -- ) { t = b / bevelSegments; z = bevelThickness * ( 1 - t ); //z = bevelThickness * t; bs = bevelSize * ( Math.sin ( t * Math.PI / 2 ) ) ; // curved //bs = bevelSize * t ; // linear // contract shape for ( i = 0, il = contour.length; i < il; i ++ ) { vert = scalePt2( contour[ i ], contourMovements[ i ], bs ); v( vert.x, vert.y, - z ); } // expand holes for ( h = 0, hl = holes.length; h < hl; h ++ ) { ahole = holes[ h ]; oneHoleMovements = holesMovements[ h ]; for ( i = 0, il = ahole.length; i < il; i ++ ) { vert = scalePt2( ahole[ i ], oneHoleMovements[ i ], bs ); v( vert.x, vert.y, - z ); } } } bs = bevelSize; // Back facing vertices for ( i = 0; i < vlen; i ++ ) { vert = bevelEnabled ? scalePt2( vertices[ i ], verticesMovements[ i ], bs ) : vertices[ i ]; if ( ! extrudeByPath ) { v( vert.x, vert.y, 0 ); } else { // v( vert.x, vert.y + extrudePts[ 0 ].y, extrudePts[ 0 ].x ); normal.copy( splineTube.normals[0] ).multiplyScalar(vert.x); binormal.copy( splineTube.binormals[0] ).multiplyScalar(vert.y); position2.copy( extrudePts[0] ).add(normal).add(binormal); v( position2.x, position2.y, position2.z ); } } // Add stepped vertices... // Including front facing vertices var s; for ( s = 1; s <= steps; s ++ ) { for ( i = 0; i < vlen; i ++ ) { vert = bevelEnabled ? scalePt2( vertices[ i ], verticesMovements[ i ], bs ) : vertices[ i ]; if ( ! extrudeByPath ) { v( vert.x, vert.y, amount / steps * s ); } else { // v( vert.x, vert.y + extrudePts[ s - 1 ].y, extrudePts[ s - 1 ].x ); normal.copy( splineTube.normals[s] ).multiplyScalar( vert.x ); binormal.copy( splineTube.binormals[s] ).multiplyScalar( vert.y ); position2.copy( extrudePts[s] ).add( normal ).add( binormal ); v( position2.x, position2.y, position2.z ); } } } // Add bevel segments planes //for ( b = 1; b <= bevelSegments; b ++ ) { for ( b = bevelSegments - 1; b >= 0; b -- ) { t = b / bevelSegments; z = bevelThickness * ( 1 - t ); //bs = bevelSize * ( 1-Math.sin ( ( 1 - t ) * Math.PI/2 ) ); bs = bevelSize * Math.sin ( t * Math.PI / 2 ) ; // contract shape for ( i = 0, il = contour.length; i < il; i ++ ) { vert = scalePt2( contour[ i ], contourMovements[ i ], bs ); v( vert.x, vert.y, amount + z ); } // expand holes for ( h = 0, hl = holes.length; h < hl; h ++ ) { ahole = holes[ h ]; oneHoleMovements = holesMovements[ h ]; for ( i = 0, il = ahole.length; i < il; i ++ ) { vert = scalePt2( ahole[ i ], oneHoleMovements[ i ], bs ); if ( ! extrudeByPath ) { v( vert.x, vert.y, amount + z ); } else { v( vert.x, vert.y + extrudePts[ steps - 1 ].y, extrudePts[ steps - 1 ].x + z ); } } } } /* Faces */ // Top and bottom faces buildLidFaces(); // Sides faces buildSideFaces(); ///// Internal functions function buildLidFaces() { if ( bevelEnabled ) { var layer = 0 ; // steps + 1 var offset = vlen * layer; // Bottom faces for ( i = 0; i < flen; i ++ ) { face = faces[ i ]; f3( face[ 2 ] + offset, face[ 1 ] + offset, face[ 0 ] + offset ); } layer = steps + bevelSegments * 2; offset = vlen * layer; // Top faces for ( i = 0; i < flen; i ++ ) { face = faces[ i ]; f3( face[ 0 ] + offset, face[ 1 ] + offset, face[ 2 ] + offset ); } } else { // Bottom faces for ( i = 0; i < flen; i ++ ) { face = faces[ i ]; f3( face[ 2 ], face[ 1 ], face[ 0 ] ); } // Top faces for ( i = 0; i < flen; i ++ ) { face = faces[ i ]; f3( face[ 0 ] + vlen * steps, face[ 1 ] + vlen * steps, face[ 2 ] + vlen * steps ); } } } // Create faces for the z-sides of the shape function buildSideFaces() { var layeroffset = 0; sidewalls( contour, layeroffset ); layeroffset += contour.length; for ( h = 0, hl = holes.length; h < hl; h ++ ) { ahole = holes[ h ]; sidewalls( ahole, layeroffset ); //, true layeroffset += ahole.length; } } function sidewalls( contour, layeroffset ) { var j, k; i = contour.length; while ( -- i >= 0 ) { j = i; k = i - 1; if ( k < 0 ) k = contour.length - 1; //console.log('b', i,j, i-1, k,vertices.length); var s = 0, sl = steps + bevelSegments * 2; for ( s = 0; s < sl; s ++ ) { var slen1 = vlen * s; var slen2 = vlen * ( s + 1 ); var a = layeroffset + j + slen1, b = layeroffset + k + slen1, c = layeroffset + k + slen2, d = layeroffset + j + slen2; f4( a, b, c, d, contour, s, sl, j, k ); } } } function v( x, y, z ) { scope.vertices.push( new THREE.Vector3( x, y, z ) ); } function f3( a, b, c ) { a += shapesOffset; b += shapesOffset; c += shapesOffset; // normal, color, material scope.faces.push( new THREE.Face3( a, b, c, null, null, material ) ); var uvs = uvgen.generateTopUV( scope, a, b, c ); scope.faceVertexUvs[ 0 ].push( uvs ); } function f4( a, b, c, d, wallContour, stepIndex, stepsLength, contourIndex1, contourIndex2 ) { a += shapesOffset; b += shapesOffset; c += shapesOffset; d += shapesOffset; scope.faces.push( new THREE.Face3( a, b, d, null, null, extrudeMaterial ) ); scope.faces.push( new THREE.Face3( b, c, d, null, null, extrudeMaterial ) ); var uvs = uvgen.generateSideWallUV( scope, a, b, c, d ); scope.faceVertexUvs[ 0 ].push( [ uvs[ 0 ], uvs[ 1 ], uvs[ 3 ] ] ); scope.faceVertexUvs[ 0 ].push( [ uvs[ 1 ], uvs[ 2 ], uvs[ 3 ] ] ); } }; THREE.ExtrudeGeometry.WorldUVGenerator = { generateTopUV: function ( geometry, indexA, indexB, indexC ) { var vertices = geometry.vertices; var a = vertices[ indexA ]; var b = vertices[ indexB ]; var c = vertices[ indexC ]; return [ new THREE.Vector2( a.x, a.y ), new THREE.Vector2( b.x, b.y ), new THREE.Vector2( c.x, c.y ) ]; }, generateSideWallUV: function ( geometry, indexA, indexB, indexC, indexD ) { var vertices = geometry.vertices; var a = vertices[ indexA ]; var b = vertices[ indexB ]; var c = vertices[ indexC ]; var d = vertices[ indexD ]; if ( Math.abs( a.y - b.y ) < 0.01 ) { return [ new THREE.Vector2( a.x, 1 - a.z ), new THREE.Vector2( b.x, 1 - b.z ), new THREE.Vector2( c.x, 1 - c.z ), new THREE.Vector2( d.x, 1 - d.z ) ]; } else { return [ new THREE.Vector2( a.y, 1 - a.z ), new THREE.Vector2( b.y, 1 - b.z ), new THREE.Vector2( c.y, 1 - c.z ), new THREE.Vector2( d.y, 1 - d.z ) ]; } } };