//noise functions adapted from Keijiro HLSL Simplex Noise vec3 mod289(vec3 x) { return x - floor(x / 289.0) * 289.0; } vec4 mod289(vec4 x) { return x - floor(x / 289.0) * 289.0; } vec4 permute(vec4 x) { return mod289((x * 34.0 + 1.0) * x); } vec4 taylorInvSqrt(vec4 r) { return 1.79284291400159 - r * 0.85373472095314; } vec3 snoise_grad(vec3 v) { const vec2 C = vec2(1.0 / 6.0, 1.0 / 3.0); // First corner vec3 i = floor(v + dot(v, C.yyy)); vec3 x0 = v - i + dot(i, C.xxx); // Other corners vec3 g = step(x0.yzx, x0.xyz); vec3 l = 1.0 - g; vec3 i1 = min(g.xyz, l.zxy); vec3 i2 = max(g.xyz, l.zxy); // x1 = x0 - i1 + 1.0 * C.xxx; // x2 = x0 - i2 + 2.0 * C.xxx; // x3 = x0 - 1.0 + 3.0 * C.xxx; vec3 x1 = x0 - i1 + C.xxx; vec3 x2 = x0 - i2 + C.yyy; vec3 x3 = x0 - 0.5; // Permutations i = mod289(i); // Avoid truncation effects in permutation vec4 p = permute(permute(permute(vec4(i.z) + vec4(0.0, i1.z, i2.z, 1.0)) + vec4(i.y) + vec4(0.0, i1.y, i2.y, 1.0)) + vec4(i.x) + vec4(0.0, i1.x, i2.x, 1.0)); // Gradients: 7x7 points over a square, mapped onto an octahedron. // The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294) vec4 j = p - 49.0 * floor(p / 49.0); // mod(p,7*7) vec4 x_ = floor(j / 7.0); vec4 y_ = floor(j - 7.0 * x_); // mod(j,N) vec4 x = (x_ * 2.0 + 0.5) / 7.0 - 1.0; vec4 y = (y_ * 2.0 + 0.5) / 7.0 - 1.0; vec4 h = 1.0 - abs(x) - abs(y); vec4 b0 = vec4(x.xy, y.xy); vec4 b1 = vec4(x.zw, y.zw); //float4 s0 = float4(lessThan(b0, 0.0)) * 2.0 - 1.0; //float4 s1 = float4(lessThan(b1, 0.0)) * 2.0 - 1.0; vec4 s0 = vec4(floor(b0) * 2.0 + 1.0); vec4 s1 = vec4(floor(b1) * 2.0 + 1.0); vec4 sh = -step(h, vec4(0.0)); vec4 a0 = b0.xzyw + s0.xzyw * sh.xxyy; vec4 a1 = b1.xzyw + s1.xzyw * sh.zzww; vec3 g0 = vec3(a0.xy, h.x); vec3 g1 = vec3(a0.zw, h.y); vec3 g2 = vec3(a1.xy, h.z); vec3 g3 = vec3(a1.zw, h.w); // Normalise gradients vec4 norm = taylorInvSqrt(vec4(dot(g0, g0), dot(g1, g1), dot(g2, g2), dot(g3, g3))); g0 *= norm.x; g1 *= norm.y; g2 *= norm.z; g3 *= norm.w; // Compute gradient of noise function at P vec4 m = max(0.6 - vec4(dot(x0, x0), dot(x1, x1), dot(x2, x2), dot(x3, x3)), 0.0); vec4 m2 = m * m; vec4 m3 = m2 * m; vec4 m4 = m2 * m2; vec3 grad = -6.0 * m3.x * x0 * dot(x0, g0) + m4.x * g0 + -6.0 * m3.y * x1 * dot(x1, g1) + m4.y * g1 + -6.0 * m3.z * x2 * dot(x2, g2) + m4.z * g2 + -6.0 * m3.w * x3 * dot(x3, g3) + m4.w * g3; return 42.0 * grad; } void mainImage( out vec4 fragColor, in vec2 fragCoord ) { vec2 iResolution; iResolution.x=7.0; iResolution.y=7.0; vec2 uv = fragCoord.xy / iResolution.xy; vec3 noiseOffset = snoise_grad(vec3(uv*16.-iGlobalTime, iGlobalTime*2.)); vec3 c = vec3(clamp(1. - length((uv * 2. - 1.)*1.5+noiseOffset.xy*0.3),0.2,1.0))*2.; c *= vec3(0.2,0.5,1.0); c += (1.-length(uv * 2. - 1.))*0.5; c = c+c+c+c; c /=3.; fragColor = vec4(c,1.0); } float getProceduralColors(inout vec3 diffuse, inout vec3 specular, inout float shininess) { vec2 position = _position.xz; position += 0.5; position.y = 1.0 - position.y; vec4 pixelColor; mainImage(pixelColor, position * iWorldScale.xz); diffuse = pixelColor.rgb; // Return 0.0 and color in diffuse for a lit surface // return 0.0; specular = pixelColor.rgb; // or return 1.0 and color in specular for unlit surface. return 1.0; }