// // Draw the unit quad [-1,-1 -> 1,1] amd pass along the unit texcoords [0, 0 -> 1, 1]. Not transform used. // Simply draw a Triangle_strip of 2 triangles, no input buffers or index buffer needed // // Created by Sam Gateau on 6/22/2015 // Copyright 2015 High Fidelity, Inc. // // Distributed under the Apache License, Version 2.0. // See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html // out vec2 varTexCoord0; void main(void) { const float depth = 1.0; const vec4 UNIT_QUAD[4] = vec4[4]( vec4(-1.0, -1.0, depth, 1.0), vec4(1.0, -1.0, depth, 1.0), vec4(-1.0, 1.0, depth, 1.0), vec4(1.0, 1.0, depth, 1.0) ); vec4 pos = UNIT_QUAD[gl_VertexID]; varTexCoord0 = (pos.xy + 1) * 0.5; gl_Position = pos; } #version 410 core // Generated on Wed Mar 02 02:25:32 2016 // // Draw and transform the unit quad [-1,-1 -> 1,1] // Simply draw a Triangle_strip of 2 triangles, no input buffers or index buffer needed // // Created by Sam Gateau on 6/22/2015 // Copyright 2015 High Fidelity, Inc. // // Distributed under the Apache License, Version 2.0. // See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html // struct TransformObject { mat4 _model; mat4 _modelInverse; }; layout(location=15) in ivec2 _drawCallInfo; uniform samplerBuffer transformObjectBuffer; TransformObject getTransformObject() { int offset = 8 * _drawCallInfo.x; TransformObject object; object._model[0] = texelFetch(transformObjectBuffer, offset); object._model[1] = texelFetch(transformObjectBuffer, offset + 1); object._model[2] = texelFetch(transformObjectBuffer, offset + 2); object._model[3] = texelFetch(transformObjectBuffer, offset + 3); object._modelInverse[0] = texelFetch(transformObjectBuffer, offset + 4); object._modelInverse[1] = texelFetch(transformObjectBuffer, offset + 5); object._modelInverse[2] = texelFetch(transformObjectBuffer, offset + 6); object._modelInverse[3] = texelFetch(transformObjectBuffer, offset + 7); return object; } struct TransformCamera { mat4 _view; mat4 _viewInverse; mat4 _projectionViewUntranslated; mat4 _projection; mat4 _projectionInverse; vec4 _viewport; }; layout(std140) uniform transformCameraBuffer { TransformCamera _camera; }; TransformCamera getTransformCamera() { return _camera; } out vec2 varTexCoord0; void main(void) { const vec4 UNIT_QUAD[4] = vec4[4]( vec4(-1.0, -1.0, 0.0, 1.0), vec4(1.0, -1.0, 0.0, 1.0), vec4(-1.0, 1.0, 0.0, 1.0), vec4(1.0, 1.0, 0.0, 1.0) ); vec4 pos = UNIT_QUAD[gl_VertexID]; // standard transform TransformCamera cam = getTransformCamera(); TransformObject obj = getTransformObject(); { // transformModelToClipPos vec4 _eyepos = (obj._model * pos) + vec4(-pos.w * cam._viewInverse[3].xyz, 0.0); gl_Position = cam._projectionViewUntranslated * _eyepos; } varTexCoord0 = (pos.xy + 1) * 0.5; } #version 410 core // Generated on Wed Mar 02 02:25:32 2016 // // Draw and transform the unit quad [-1,-1 -> 1,1] // Transform the normalized texcoords [0, 1] to be in the range [texcoordRect.xy, texcoordRect.xy + texcoordRect.zw] // Simply draw a Triangle_strip of 2 triangles, no input buffers or index buffer needed // // Created by Sam Gateau on 6/22/2015 // Copyright 2015 High Fidelity, Inc. // // Distributed under the Apache License, Version 2.0. // See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html // struct TransformObject { mat4 _model; mat4 _modelInverse; }; layout(location=15) in ivec2 _drawCallInfo; uniform samplerBuffer transformObjectBuffer; TransformObject getTransformObject() { int offset = 8 * _drawCallInfo.x; TransformObject object; object._model[0] = texelFetch(transformObjectBuffer, offset); object._model[1] = texelFetch(transformObjectBuffer, offset + 1); object._model[2] = texelFetch(transformObjectBuffer, offset + 2); object._model[3] = texelFetch(transformObjectBuffer, offset + 3); object._modelInverse[0] = texelFetch(transformObjectBuffer, offset + 4); object._modelInverse[1] = texelFetch(transformObjectBuffer, offset + 5); object._modelInverse[2] = texelFetch(transformObjectBuffer, offset + 6); object._modelInverse[3] = texelFetch(transformObjectBuffer, offset + 7); return object; } struct TransformCamera { mat4 _view; mat4 _viewInverse; mat4 _projectionViewUntranslated; mat4 _projection; mat4 _projectionInverse; vec4 _viewport; }; layout(std140) uniform transformCameraBuffer { TransformCamera _camera; }; TransformCamera getTransformCamera() { return _camera; } uniform vec4 texcoordRect; out vec2 varTexCoord0; void main(void) { const vec4 UNIT_QUAD[4] = vec4[4]( vec4(-1.0, -1.0, 0.0, 1.0), vec4(1.0, -1.0, 0.0, 1.0), vec4(-1.0, 1.0, 0.0, 1.0), vec4(1.0, 1.0, 0.0, 1.0) ); vec4 pos = UNIT_QUAD[gl_VertexID]; // standard transform TransformCamera cam = getTransformCamera(); TransformObject obj = getTransformObject(); { // transformModelToClipPos vec4 _eyepos = (obj._model * pos) + vec4(-pos.w * cam._viewInverse[3].xyz, 0.0); gl_Position = cam._projectionViewUntranslated * _eyepos; } varTexCoord0 = ((pos.xy + 1) * 0.5) * texcoordRect.zw + texcoordRect.xy; } #version 410 core // Generated on Wed Mar 02 02:25:32 2016 // // Draw the unit quad [-1,-1 -> 1,1] filling in // Simply draw a Triangle_strip of 2 triangles, no input buffers or index buffer needed // // Created by Sam Gateau on 6/22/2015 // Copyright 2015 High Fidelity, Inc. // // Distributed under the Apache License, Version 2.0. // See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html // struct TransformObject { mat4 _model; mat4 _modelInverse; }; layout(location=15) in ivec2 _drawCallInfo; uniform samplerBuffer transformObjectBuffer; TransformObject getTransformObject() { int offset = 8 * _drawCallInfo.x; TransformObject object; object._model[0] = texelFetch(transformObjectBuffer, offset); object._model[1] = texelFetch(transformObjectBuffer, offset + 1); object._model[2] = texelFetch(transformObjectBuffer, offset + 2); object._model[3] = texelFetch(transformObjectBuffer, offset + 3); object._modelInverse[0] = texelFetch(transformObjectBuffer, offset + 4); object._modelInverse[1] = texelFetch(transformObjectBuffer, offset + 5); object._modelInverse[2] = texelFetch(transformObjectBuffer, offset + 6); object._modelInverse[3] = texelFetch(transformObjectBuffer, offset + 7); return object; } struct TransformCamera { mat4 _view; mat4 _viewInverse; mat4 _projectionViewUntranslated; mat4 _projection; mat4 _projectionInverse; vec4 _viewport; }; layout(std140) uniform transformCameraBuffer { TransformCamera _camera; }; TransformCamera getTransformCamera() { return _camera; } out vec2 varTexCoord0; void main(void) { const vec4 UNIT_QUAD[4] = vec4[4]( vec4(-1.0, -1.0, 0.0, 1.0), vec4(1.0, -1.0, 0.0, 1.0), vec4(-1.0, 1.0, 0.0, 1.0), vec4(1.0, 1.0, 0.0, 1.0) ); vec4 pos = UNIT_QUAD[gl_VertexID]; // standard transform but applied to the Texcoord vec4 tc = vec4((pos.xy + 1) * 0.5, pos.zw); TransformObject obj = getTransformObject(); { // transformModelToWorldPos tc = (obj._model * tc); } gl_Position = pos; varTexCoord0 = tc.xy; } #version 410 core // Generated on Wed Mar 02 02:25:32 2016 // // Draw texture 0 fetched at texcoord.xy // // Created by Sam Gateau on 6/22/2015 // Copyright 2015 High Fidelity, Inc. // // Distributed under the Apache License, Version 2.0. // See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html // uniform sampler2D colorMap; in vec2 varTexCoord0; out vec4 outFragColor; void main(void) { outFragColor = texture(colorMap, varTexCoord0); } #version 410 core // Generated on Wed Mar 02 02:25:32 2016 // // Draw texture 0 fetched at texcoord.xy // Alpha is 1 // // Created by Sam Gateau on 6/22/2015 // Copyright 2015 High Fidelity, Inc. // // Distributed under the Apache License, Version 2.0. // See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html // uniform sampler2D colorMap; in vec2 varTexCoord0; out vec4 outFragColor; void main(void) { outFragColor = vec4(texture(colorMap, varTexCoord0).xyz, 1.0); } #version 410 core // Generated on Wed Mar 02 02:25:32 2016 // // Draw texture 0 fetched at texcoord.xy, Blend with color uniform // // Created by Sam Gateau on 7/12/2015 // Copyright 2015 High Fidelity, Inc. // // Distributed under the Apache License, Version 2.0. // See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html // uniform sampler2D colorMap; uniform vec4 color; in vec2 varTexCoord0; out vec4 outFragColor; void main(void) { outFragColor = texture(colorMap, varTexCoord0) * color; } "“ üôž  õž 8  "“ üôž  `õž 8  "“ üôž  °õž 8  "“ üôž  öž 8  "“ ä&‘  8öž  `öž  #version 410 core // Generated on Wed Mar 02 02:26:36 2016 // skybox.vert // vertex shader // // Created by Sam Gateau on 5/5/2015. // Copyright 2015 High Fidelity, Inc. // // Distributed under the Apache License, Version 2.0. // See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html // struct TransformObject { mat4 _model; mat4 _modelInverse; }; layout(location=15) in ivec2 _drawCallInfo; uniform samplerBuffer transformObjectBuffer; TransformObject getTransformObject() { int offset = 8 * _drawCallInfo.x; TransformObject object; object._model[0] = texelFetch(transformObjectBuffer, offset); object._model[1] = texelFetch(transformObjectBuffer, offset + 1); object._model[2] = texelFetch(transformObjectBuffer, offset + 2); object._model[3] = texelFetch(transformObjectBuffer, offset + 3); object._modelInverse[0] = texelFetch(transformObjectBuffer, offset + 4); object._modelInverse[1] = texelFetch(transformObjectBuffer, offset + 5); object._modelInverse[2] = texelFetch(transformObjectBuffer, offset + 6); object._modelInverse[3] = texelFetch(transformObjectBuffer, offset + 7); return object; } struct TransformCamera { mat4 _view; mat4 _viewInverse; mat4 _projectionViewUntranslated; mat4 _projection; mat4 _projectionInverse; vec4 _viewport; }; layout(std140) uniform transformCameraBuffer { TransformCamera _camera; }; TransformCamera getTransformCamera() { return _camera; } out vec3 _normal; void main(void) { const float depth = 0.0; const vec4 UNIT_QUAD[4] = vec4[4]( vec4(-1.0, -1.0, depth, 1.0), vec4(1.0, -1.0, depth, 1.0), vec4(-1.0, 1.0, depth, 1.0), vec4(1.0, 1.0, depth, 1.0) ); vec4 inPosition = UNIT_QUAD[gl_VertexID]; // standard transform TransformCamera cam = getTransformCamera(); vec3 clipDir = vec3(inPosition.xy, 0.0); vec3 eyeDir; { // transformClipToEyeDir eyeDir = vec3(cam._projectionInverse * vec4(clipDir.xyz, 1.0)); // Must be 1.0 here } { // transformEyeToWorldDir _normal = vec3(cam._viewInverse * vec4(eyeDir.xyz, 0.0)); } // Position is supposed to come in clip space gl_Position = vec4(inPosition.xy, 0.0, 1.0); } #version 410 core // Generated on Wed Mar 02 02:26:36 2016 // skybox.frag // fragment shader // // Created by Sam Gateau on 5/5/2015. // Copyright 2015 High Fidelity, Inc. // // Distributed under the Apache License, Version 2.0. // See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html // uniform samplerCube cubeMap; struct Skybox { vec4 _color; }; uniform skyboxBuffer { Skybox _skybox; }; in vec3 _normal; out vec4 _fragColor; //PROCEDURAL_COMMON_BLOCK #line 1001 //PROCEDURAL_BLOCK #line 2033 void main(void) { #ifdef PROCEDURAL vec3 color = getSkyboxColor(); // Procedural Shaders are expected to be Gamma corrected so let's bring back the RGB in linear space for the rest of the pipeline color = pow(color, vec3(2.2)); _fragColor = vec4(color, 0.0); #else vec3 coord = normalize(_normal); vec3 texel = texture(cubeMap, coord).rgb; vec3 color = texel * _skybox._color.rgb; _fragColor = vec4(color, 0.0); #endif }                                     "“ øž  0øž H  "“ „øž  øž  ¸@ @oW@ ÀqW@ ÛI@ pB pB                                      "“ ¸øž ðøž (  "“ \ùž  ðùž 0  "“ ¼úž % pûž   "“ èüž * ýž   "“$ ÿž ; @ Ÿ   "“ ä&‘  ,Ÿ  XŸ  "“ 0Ÿ  XŸ  "“ °Ÿ  ¸Ÿ 0  "“ ôŸ  Ÿ  @Ÿ (  float mod289(float x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } vec2 mod289(vec2 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } vec3 mod289(vec3 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } vec4 mod289(vec4 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } float permute(float x) { return mod289(((x*34.0)+1.0)*x); } vec3 permute(vec3 x) { return mod289(((x*34.0)+1.0)*x); } vec4 permute(vec4 x) { return mod289(((x*34.0)+1.0)*x); } float taylorInvSqrt(float r) { return 1.79284291400159 - 0.85373472095314 * r; } vec4 taylorInvSqrt(vec4 r) { return 1.79284291400159 - 0.85373472095314 * r; } vec4 grad4(float j, vec4 ip) { const vec4 ones = vec4(1.0, 1.0, 1.0, -1.0); vec4 p, s; p.xyz = floor(fract(vec3(j) * ip.xyz) * 7.0) * ip.z - 1.0; p.w = 1.5 - dot(abs(p.xyz), ones.xyz); s = vec4(lessThan(p, vec4(0.0))); p.xyz = p.xyz + (s.xyz * 2.0 - 1.0) * s.www; return p; } // (sqrt(5) - 1)/4 = F4, used once below #define F4 0.309016994374947451 float snoise(vec4 v) { const vec4 C = vec4(0.138196601125011, // (5 - sqrt(5))/20 G4 0.276393202250021, // 2 * G4 0.414589803375032, // 3 * G4 -0.447213595499958); // -1 + 4 * G4 // First corner vec4 i = floor(v + dot(v, vec4(F4))); vec4 x0 = v - i + dot(i, C.xxxx); // Other corners // Rank sorting originally contributed by Bill Licea-Kane, AMD (formerly ATI) vec4 i0; vec3 isX = step(x0.yzw, x0.xxx); vec3 isYZ = step(x0.zww, x0.yyz); i0.x = isX.x + isX.y + isX.z; i0.yzw = 1.0 - isX; i0.y += isYZ.x + isYZ.y; i0.zw += 1.0 - isYZ.xy; i0.z += isYZ.z; i0.w += 1.0 - isYZ.z; // i0 now contains the unique values 0,1,2,3 in each channel vec4 i3 = clamp(i0, 0.0, 1.0); vec4 i2 = clamp(i0 - 1.0, 0.0, 1.0); vec4 i1 = clamp(i0 - 2.0, 0.0, 1.0); vec4 x1 = x0 - i1 + C.xxxx; vec4 x2 = x0 - i2 + C.yyyy; vec4 x3 = x0 - i3 + C.zzzz; vec4 x4 = x0 + C.wwww; // Permutations i = mod289(i); float j0 = permute(permute(permute(permute(i.w) + i.z) + i.y) + i.x); vec4 j1 = permute( permute( permute( permute(i.w + vec4(i1.w, i2.w, i3.w, 1.0)) + i.z + vec4(i1.z, i2.z, i3.z, 1.0)) + i.y + vec4(i1.y, i2.y, i3.y, 1.0)) + i.x + vec4(i1.x, i2.x, i3.x, 1.0)); // Gradients: 7x7x6 points over a cube, mapped onto a 4-cross polytope // 7*7*6 = 294, which is close to the ring size 17*17 = 289. vec4 ip = vec4(1.0 / 294.0, 1.0 / 49.0, 1.0 / 7.0, 0.0); vec4 p0 = grad4(j0, ip); vec4 p1 = grad4(j1.x, ip); vec4 p2 = grad4(j1.y, ip); vec4 p3 = grad4(j1.z, ip); vec4 p4 = grad4(j1.w, ip); // Normalise gradients vec4 norm = taylorInvSqrt( vec4(dot(p0, p0), dot(p1, p1), dot(p2, p2), dot(p3, p3))); p0 *= norm.x; p1 *= norm.y; p2 *= norm.z; p3 *= norm.w; p4 *= taylorInvSqrt(dot(p4, p4)); // Mix contributions from the five corners vec3 m0 = max(0.6 - vec3(dot(x0, x0), dot(x1, x1), dot(x2, x2)), 0.0); vec2 m1 = max(0.6 - vec2(dot(x3, x3), dot(x4, x4)), 0.0); m0 = m0 * m0; m1 = m1 * m1; return 49.0 * (dot(m0 * m0, vec3(dot(p0, x0), dot(p1, x1), dot(p2, x2))) + dot(m1 * m1, vec2(dot(p3, x3), dot(p4, x4)))); } float snoise(vec3 v) { const vec2 C = vec2(1.0 / 6.0, 1.0 / 3.0); const vec4 D = vec4(0.0, 0.5, 1.0, 2.0); // First corner vec3 i = floor(v + dot(v, C.yyy)); vec3 x0 = v - i + dot(i, C.xxx); // Other corners vec3 g = step(x0.yzx, x0.xyz); vec3 l = 1.0 - g; vec3 i1 = min(g.xyz, l.zxy); vec3 i2 = max(g.xyz, l.zxy); vec3 x1 = x0 - i1 + C.xxx; vec3 x2 = x0 - i2 + C.yyy; // 2.0*C.x = 1/3 = C.y vec3 x3 = x0 - D.yyy; // -1.0+3.0*C.x = -0.5 = -D.y // Permutations i = mod289(i); vec4 p = permute( permute( permute(i.z + vec4(0.0, i1.z, i2.z, 1.0)) + i.y + vec4(0.0, i1.y, i2.y, 1.0)) + i.x + vec4(0.0, i1.x, i2.x, 1.0)); // Gradients: 7x7 points over a square, mapped onto an octahedron. // The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294) float n_ = 0.142857142857; // 1.0/7.0 vec3 ns = n_ * D.wyz - D.xzx; vec4 j = p - 49.0 * floor(p * ns.z * ns.z); // mod(p,7*7) vec4 x_ = floor(j * ns.z); vec4 y_ = floor(j - 7.0 * x_); // mod(j,N) vec4 x = x_ * ns.x + ns.yyyy; vec4 y = y_ * ns.x + ns.yyyy; vec4 h = 1.0 - abs(x) - abs(y); vec4 b0 = vec4(x.xy, y.xy); vec4 b1 = vec4(x.zw, y.zw); //vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0; //vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0; vec4 s0 = floor(b0) * 2.0 + 1.0; vec4 s1 = floor(b1) * 2.0 + 1.0; vec4 sh = -step(h, vec4(0.0)); vec4 a0 = b0.xzyw + s0.xzyw * sh.xxyy; vec4 a1 = b1.xzyw + s1.xzyw * sh.zzww; vec3 p0 = vec3(a0.xy, h.x); vec3 p1 = vec3(a0.zw, h.y); vec3 p2 = vec3(a1.xy, h.z); vec3 p3 = vec3(a1.zw, h.w); //Normalise gradients vec4 norm = taylorInvSqrt( vec4(dot(p0, p0), dot(p1, p1), dot(p2, p2), dot(p3, p3))); p0 *= norm.x; p1 *= norm.y; p2 *= norm.z; p3 *= norm.w; // Mix final noise value vec4 m = max(0.6 - vec4(dot(x0, x0), dot(x1, x1), dot(x2, x2), dot(x3, x3)), 0.0); m = m * m; return 42.0 * dot(m * m, vec4(dot(p0, x0), dot(p1, x1), dot(p2, x2), dot(p3, x3))); } float snoise(vec2 v) { const vec4 C = vec4(0.211324865405187, // (3.0-sqrt(3.0))/6.0 0.366025403784439, // 0.5*(sqrt(3.0)-1.0) -0.577350269189626, // -1.0 + 2.0 * C.x 0.024390243902439); // 1.0 / 41.0 // First corner vec2 i = floor(v + dot(v, C.yy)); vec2 x0 = v - i + dot(i, C.xx); // Other corners vec2 i1; i1 = (x0.x > x0.y) ? vec2(1.0, 0.0) : vec2(0.0, 1.0); vec4 x12 = x0.xyxy + C.xxzz; x12.xy -= i1; // Permutations i = mod289(i); // Avoid truncation effects in permutation vec3 p = permute( permute(i.y + vec3(0.0, i1.y, 1.0)) + i.x + vec3(0.0, i1.x, 1.0)); vec3 m = max(0.5 - vec3(dot(x0, x0), dot(x12.xy, x12.xy), dot(x12.zw, x12.zw)), 0.0); m = m * m; m = m * m; // Gradients: 41 points uniformly over a line, mapped onto a diamond. // The ring size 17*17 = 289 is close to a multiple of 41 (41*7 = 287) vec3 x = 2.0 * fract(p * C.www) - 1.0; vec3 h = abs(x) - 0.5; vec3 ox = floor(x + 0.5); vec3 a0 = x - ox; // Normalise gradients implicitly by scaling m // Approximation of: m *= inversesqrt( a0*a0 + h*h ); m *= 1.79284291400159 - 0.85373472095314 * (a0 * a0 + h * h); // Compute final noise value at P vec3 g; g.x = a0.x * x0.x + h.x * x0.y; g.yz = a0.yz * x12.xz + h.yz * x12.yw; return 130.0 * dot(m, g); } // shader playback time (in seconds) uniform float iGlobalTime; // the dimensions of the object being rendered uniform vec3 iWorldScale; #define PROCEDURAL 1 //PROCEDURAL_VERSION #ifdef PROCEDURAL_V1 #else // Unimplemented uniforms // Resolution doesn't make sense in the VR context const vec3 iResolution = vec3(1.0); // Mouse functions not enabled currently const vec4 iMouse = vec4(0.0); // No support for audio input const float iSampleRate = 1.0; // No support for video input const vec4 iChannelTime = vec4(0.0); uniform vec4 iDate; uniform int iFrameCount; uniform vec3 iWorldPosition; uniform vec3 iChannelResolution[4]; uniform sampler2D iChannel0; uniform sampler2D iChannel1; uniform sampler2D iChannel2; uniform sampler2D iChannel3; #endif ProceduralEntity shaderUrl uniforms channels //PROCEDURAL_BLOCK //PROCEDURAL_COMMON_BLOCK //PROCEDURAL_VERSION iDate iFrameCount iWorldScale iWorldPosition iChannelResolution Invalid shader URL: Shader path: Shader url: #define PROCEDURAL_V1 1 #define PROCEDURAL_V2 1 iChannel0 iChannel1 iChannel2 iChannel3