overte/libraries/render-utils/src/DeferredLightingEffect.cpp

425 lines
18 KiB
C++

//
// DeferredLightingEffect.cpp
// interface/src/renderer
//
// Created by Andrzej Kapolka on 9/11/14.
// Copyright 2014 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
// include this before QOpenGLFramebufferObject, which includes an earlier version of OpenGL
#include <gpu/GPUConfig.h>
#include <gpu/GLUTConfig.h> // TODO - we need to get rid of this ASAP
#include <QOpenGLFramebufferObject>
#include <GLMHelpers.h>
#include <PathUtils.h>
#include <ViewFrustum.h>
#include "AbstractViewStateInterface.h"
#include "DeferredLightingEffect.h"
#include "GeometryCache.h"
#include "GlowEffect.h"
#include "RenderUtil.h"
#include "TextureCache.h"
void DeferredLightingEffect::init(AbstractViewStateInterface* viewState) {
_viewState = viewState;
_simpleProgram.addShaderFromSourceFile(QGLShader::Vertex, PathUtils::resourcesPath() + "shaders/simple.vert");
_simpleProgram.addShaderFromSourceFile(QGLShader::Fragment, PathUtils::resourcesPath() + "shaders/simple.frag");
_simpleProgram.link();
_simpleProgram.bind();
_glowIntensityLocation = _simpleProgram.uniformLocation("glowIntensity");
_simpleProgram.release();
loadLightProgram("shaders/directional_light.frag", false, _directionalLight, _directionalLightLocations);
loadLightProgram("shaders/directional_light_shadow_map.frag", false, _directionalLightShadowMap,
_directionalLightShadowMapLocations);
loadLightProgram("shaders/directional_light_cascaded_shadow_map.frag", false, _directionalLightCascadedShadowMap,
_directionalLightCascadedShadowMapLocations);
loadLightProgram("shaders/point_light.frag", true, _pointLight, _pointLightLocations);
loadLightProgram("shaders/spot_light.frag", true, _spotLight, _spotLightLocations);
}
void DeferredLightingEffect::bindSimpleProgram() {
DependencyManager::get<TextureCache>()->setPrimaryDrawBuffers(true, true, true);
_simpleProgram.bind();
_simpleProgram.setUniformValue(_glowIntensityLocation, DependencyManager::get<GlowEffect>()->getIntensity());
glDisable(GL_BLEND);
}
void DeferredLightingEffect::releaseSimpleProgram() {
glEnable(GL_BLEND);
_simpleProgram.release();
DependencyManager::get<TextureCache>()->setPrimaryDrawBuffers(true, false, false);
}
void DeferredLightingEffect::renderSolidSphere(float radius, int slices, int stacks) {
bindSimpleProgram();
DependencyManager::get<GeometryCache>()->renderSphere(radius, slices, stacks);
releaseSimpleProgram();
}
void DeferredLightingEffect::renderWireSphere(float radius, int slices, int stacks) {
bindSimpleProgram();
DependencyManager::get<GeometryCache>()->renderSphere(radius, slices, stacks, false);
releaseSimpleProgram();
}
void DeferredLightingEffect::renderSolidCube(float size) {
bindSimpleProgram();
glutSolidCube(size);
releaseSimpleProgram();
}
void DeferredLightingEffect::renderWireCube(float size) {
bindSimpleProgram();
glutWireCube(size);
releaseSimpleProgram();
}
void DeferredLightingEffect::renderSolidCone(float base, float height, int slices, int stacks) {
bindSimpleProgram();
DependencyManager::get<GeometryCache>()->renderCone(base, height, slices, stacks);
releaseSimpleProgram();
}
void DeferredLightingEffect::addPointLight(const glm::vec3& position, float radius, const glm::vec3& ambient,
const glm::vec3& diffuse, const glm::vec3& specular, float constantAttenuation,
float linearAttenuation, float quadraticAttenuation) {
addSpotLight(position, radius, ambient, diffuse, specular, constantAttenuation, linearAttenuation, quadraticAttenuation);
}
void DeferredLightingEffect::addSpotLight(const glm::vec3& position, float radius, const glm::vec3& ambient,
const glm::vec3& diffuse, const glm::vec3& specular, float constantAttenuation, float linearAttenuation,
float quadraticAttenuation, const glm::vec3& direction, float exponent, float cutoff) {
if (exponent == 0.0f && cutoff == PI) {
PointLight light;
light.position = glm::vec4(position, 1.0f);
light.radius = radius;
light.ambient = glm::vec4(ambient, 1.0f);
light.diffuse = glm::vec4(diffuse, 1.0f);
light.specular = glm::vec4(specular, 1.0f);
light.constantAttenuation = constantAttenuation;
light.linearAttenuation = linearAttenuation;
_pointLights.append(light);
} else {
SpotLight light;
light.position = glm::vec4(position, 1.0f);
light.radius = radius;
light.ambient = glm::vec4(ambient, 1.0f);
light.diffuse = glm::vec4(diffuse, 1.0f);
light.specular = glm::vec4(specular, 1.0f);
light.constantAttenuation = constantAttenuation;
light.linearAttenuation = linearAttenuation;
light.direction = direction;
light.exponent = exponent;
light.cutoff = cutoff;
_spotLights.append(light);
}
}
void DeferredLightingEffect::prepare() {
// clear the normal and specular buffers
TextureCache::SharedPointer textureCache = DependencyManager::get<TextureCache>();
textureCache->setPrimaryDrawBuffers(false, true, false);
glClear(GL_COLOR_BUFFER_BIT);
textureCache->setPrimaryDrawBuffers(false, false, true);
// clearing to zero alpha for specular causes problems on my Nvidia card; clear to lowest non-zero value instead
const float MAX_SPECULAR_EXPONENT = 128.0f;
glClearColor(0.0f, 0.0f, 0.0f, 1.0f / MAX_SPECULAR_EXPONENT);
glClear(GL_COLOR_BUFFER_BIT);
glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
textureCache->setPrimaryDrawBuffers(true, false, false);
}
void DeferredLightingEffect::render() {
// perform deferred lighting, rendering to free fbo
glColor4f(1.0f, 1.0f, 1.0f, 1.0f);
glDisable(GL_BLEND);
glDisable(GL_LIGHTING);
glDisable(GL_DEPTH_TEST);
glDisable(GL_COLOR_MATERIAL);
glDepthMask(false);
TextureCache::SharedPointer textureCache = DependencyManager::get<TextureCache>();
QOpenGLFramebufferObject* primaryFBO = textureCache->getPrimaryFramebufferObject();
primaryFBO->release();
QOpenGLFramebufferObject* freeFBO = DependencyManager::get<GlowEffect>()->getFreeFramebufferObject();
freeFBO->bind();
glClear(GL_COLOR_BUFFER_BIT);
glBindTexture(GL_TEXTURE_2D, primaryFBO->texture());
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, textureCache->getPrimaryNormalTextureID());
glActiveTexture(GL_TEXTURE2);
glBindTexture(GL_TEXTURE_2D, textureCache->getPrimarySpecularTextureID());
glActiveTexture(GL_TEXTURE3);
glBindTexture(GL_TEXTURE_2D, textureCache->getPrimaryDepthTextureID());
// get the viewport side (left, right, both)
int viewport[4];
glGetIntegerv(GL_VIEWPORT, viewport);
const int VIEWPORT_X_INDEX = 0;
const int VIEWPORT_Y_INDEX = 1;
const int VIEWPORT_WIDTH_INDEX = 2;
const int VIEWPORT_HEIGHT_INDEX = 3;
float sMin = viewport[VIEWPORT_X_INDEX] / (float)primaryFBO->width();
float sWidth = viewport[VIEWPORT_WIDTH_INDEX] / (float)primaryFBO->width();
float tMin = viewport[VIEWPORT_Y_INDEX] / (float)primaryFBO->height();
float tHeight = viewport[VIEWPORT_HEIGHT_INDEX] / (float)primaryFBO->height();
ProgramObject* program = &_directionalLight;
const LightLocations* locations = &_directionalLightLocations;
bool shadowsEnabled = _viewState->getShadowsEnabled();
if (shadowsEnabled) {
glActiveTexture(GL_TEXTURE4);
glBindTexture(GL_TEXTURE_2D, textureCache->getShadowDepthTextureID());
program = &_directionalLightShadowMap;
locations = &_directionalLightShadowMapLocations;
if (_viewState->getCascadeShadowsEnabled()) {
program = &_directionalLightCascadedShadowMap;
locations = &_directionalLightCascadedShadowMapLocations;
_directionalLightCascadedShadowMap.bind();
_directionalLightCascadedShadowMap.setUniform(locations->shadowDistances, _viewState->getShadowDistances());
} else {
program->bind();
}
program->setUniformValue(locations->shadowScale,
1.0f / textureCache->getShadowFramebufferObject()->width());
} else {
program->bind();
}
float left, right, bottom, top, nearVal, farVal;
glm::vec4 nearClipPlane, farClipPlane;
_viewState->computeOffAxisFrustum(left, right, bottom, top, nearVal, farVal, nearClipPlane, farClipPlane);
program->setUniformValue(locations->nearLocation, nearVal);
float depthScale = (farVal - nearVal) / farVal;
program->setUniformValue(locations->depthScale, depthScale);
float nearScale = -1.0f / nearVal;
float depthTexCoordScaleS = (right - left) * nearScale / sWidth;
float depthTexCoordScaleT = (top - bottom) * nearScale / tHeight;
float depthTexCoordOffsetS = left * nearScale - sMin * depthTexCoordScaleS;
float depthTexCoordOffsetT = bottom * nearScale - tMin * depthTexCoordScaleT;
program->setUniformValue(locations->depthTexCoordOffset, depthTexCoordOffsetS, depthTexCoordOffsetT);
program->setUniformValue(locations->depthTexCoordScale, depthTexCoordScaleS, depthTexCoordScaleT);
renderFullscreenQuad(sMin, sMin + sWidth, tMin, tMin + tHeight);
program->release();
if (shadowsEnabled) {
glBindTexture(GL_TEXTURE_2D, 0);
glActiveTexture(GL_TEXTURE3);
}
// additive blending
glEnable(GL_BLEND);
glBlendFunc(GL_ONE, GL_ONE);
glEnable(GL_CULL_FACE);
glm::vec4 sCoefficients(sWidth / 2.0f, 0.0f, 0.0f, sMin + sWidth / 2.0f);
glm::vec4 tCoefficients(0.0f, tHeight / 2.0f, 0.0f, tMin + tHeight / 2.0f);
glTexGenfv(GL_S, GL_OBJECT_PLANE, (const GLfloat*)&sCoefficients);
glTexGenfv(GL_T, GL_OBJECT_PLANE, (const GLfloat*)&tCoefficients);
// enlarge the scales slightly to account for tesselation
const float SCALE_EXPANSION = 0.05f;
const glm::vec3& eyePoint = _viewState->getCurrentViewFrustum()->getPosition();
float nearRadius = glm::distance(eyePoint, _viewState->getCurrentViewFrustum()->getNearTopLeft());
GeometryCache::SharedPointer geometryCache = DependencyManager::get<GeometryCache>();
if (!_pointLights.isEmpty()) {
_pointLight.bind();
_pointLight.setUniformValue(_pointLightLocations.nearLocation, nearVal);
_pointLight.setUniformValue(_pointLightLocations.depthScale, depthScale);
_pointLight.setUniformValue(_pointLightLocations.depthTexCoordOffset, depthTexCoordOffsetS, depthTexCoordOffsetT);
_pointLight.setUniformValue(_pointLightLocations.depthTexCoordScale, depthTexCoordScaleS, depthTexCoordScaleT);
foreach (const PointLight& light, _pointLights) {
_pointLight.setUniformValue(_pointLightLocations.radius, light.radius);
glLightfv(GL_LIGHT1, GL_AMBIENT, (const GLfloat*)&light.ambient);
glLightfv(GL_LIGHT1, GL_DIFFUSE, (const GLfloat*)&light.diffuse);
glLightfv(GL_LIGHT1, GL_SPECULAR, (const GLfloat*)&light.specular);
glLightfv(GL_LIGHT1, GL_POSITION, (const GLfloat*)&light.position);
glLightf(GL_LIGHT1, GL_CONSTANT_ATTENUATION, (light.constantAttenuation > 0.0f ? light.constantAttenuation : 0.0f));
glLightf(GL_LIGHT1, GL_LINEAR_ATTENUATION, (light.linearAttenuation > 0.0f ? light.linearAttenuation : 0.0f));
glLightf(GL_LIGHT1, GL_QUADRATIC_ATTENUATION, (light.quadraticAttenuation > 0.0f ? light.quadraticAttenuation : 0.0f));
glPushMatrix();
float expandedRadius = light.radius * (1.0f + SCALE_EXPANSION);
if (glm::distance(eyePoint, glm::vec3(light.position)) < expandedRadius + nearRadius) {
glLoadIdentity();
glTranslatef(0.0f, 0.0f, -1.0f);
glMatrixMode(GL_PROJECTION);
glPushMatrix();
glLoadIdentity();
renderFullscreenQuad();
glPopMatrix();
glMatrixMode(GL_MODELVIEW);
} else {
glTranslatef(light.position.x, light.position.y, light.position.z);
geometryCache->renderSphere(expandedRadius, 32, 32);
}
glPopMatrix();
}
_pointLights.clear();
_pointLight.release();
}
if (!_spotLights.isEmpty()) {
_spotLight.bind();
_spotLight.setUniformValue(_spotLightLocations.nearLocation, nearVal);
_spotLight.setUniformValue(_spotLightLocations.depthScale, depthScale);
_spotLight.setUniformValue(_spotLightLocations.depthTexCoordOffset, depthTexCoordOffsetS, depthTexCoordOffsetT);
_spotLight.setUniformValue(_spotLightLocations.depthTexCoordScale, depthTexCoordScaleS, depthTexCoordScaleT);
foreach (const SpotLight& light, _spotLights) {
_spotLight.setUniformValue(_spotLightLocations.radius, light.radius);
glLightfv(GL_LIGHT1, GL_AMBIENT, (const GLfloat*)&light.ambient);
glLightfv(GL_LIGHT1, GL_DIFFUSE, (const GLfloat*)&light.diffuse);
glLightfv(GL_LIGHT1, GL_SPECULAR, (const GLfloat*)&light.specular);
glLightfv(GL_LIGHT1, GL_POSITION, (const GLfloat*)&light.position);
glLightf(GL_LIGHT1, GL_CONSTANT_ATTENUATION, (light.constantAttenuation > 0.0f ? light.constantAttenuation : 0.0f));
glLightf(GL_LIGHT1, GL_LINEAR_ATTENUATION, (light.linearAttenuation > 0.0f ? light.linearAttenuation : 0.0f));
glLightf(GL_LIGHT1, GL_QUADRATIC_ATTENUATION, (light.quadraticAttenuation > 0.0f ? light.quadraticAttenuation : 0.0f));
glLightfv(GL_LIGHT1, GL_SPOT_DIRECTION, (const GLfloat*)&light.direction);
glLightf(GL_LIGHT1, GL_SPOT_EXPONENT, light.exponent);
glLightf(GL_LIGHT1, GL_SPOT_CUTOFF, glm::degrees(light.cutoff));
glPushMatrix();
float expandedRadius = light.radius * (1.0f + SCALE_EXPANSION);
float edgeRadius = expandedRadius / glm::cos(light.cutoff);
if (glm::distance(eyePoint, glm::vec3(light.position)) < edgeRadius + nearRadius) {
glLoadIdentity();
glTranslatef(0.0f, 0.0f, -1.0f);
glMatrixMode(GL_PROJECTION);
glPushMatrix();
glLoadIdentity();
renderFullscreenQuad();
glPopMatrix();
glMatrixMode(GL_MODELVIEW);
} else {
glTranslatef(light.position.x, light.position.y, light.position.z);
glm::quat spotRotation = rotationBetween(glm::vec3(0.0f, 0.0f, -1.0f), light.direction);
glm::vec3 axis = glm::axis(spotRotation);
glRotatef(glm::degrees(glm::angle(spotRotation)), axis.x, axis.y, axis.z);
glTranslatef(0.0f, 0.0f, -light.radius * (1.0f + SCALE_EXPANSION * 0.5f));
geometryCache->renderCone(expandedRadius * glm::tan(light.cutoff),
expandedRadius, 32, 1);
}
glPopMatrix();
}
_spotLights.clear();
_spotLight.release();
}
glBindTexture(GL_TEXTURE_2D, 0);
glActiveTexture(GL_TEXTURE2);
glBindTexture(GL_TEXTURE_2D, 0);
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, 0);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, 0);
freeFBO->release();
glDisable(GL_CULL_FACE);
// now transfer the lit region to the primary fbo
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_CONSTANT_ALPHA, GL_ONE);
glColorMask(true, true, true, false);
primaryFBO->bind();
glBindTexture(GL_TEXTURE_2D, freeFBO->texture());
glEnable(GL_TEXTURE_2D);
glPushMatrix();
glLoadIdentity();
glMatrixMode(GL_PROJECTION);
glPushMatrix();
glLoadIdentity();
renderFullscreenQuad(sMin, sMin + sWidth, tMin, tMin + tHeight);
glBindTexture(GL_TEXTURE_2D, 0);
glDisable(GL_TEXTURE_2D);
glColorMask(true, true, true, true);
glEnable(GL_LIGHTING);
glEnable(GL_COLOR_MATERIAL);
glEnable(GL_DEPTH_TEST);
glDepthMask(true);
glPopMatrix();
glMatrixMode(GL_MODELVIEW);
glPopMatrix();
// now render the objects we held back until after deferred lighting
foreach (PostLightingRenderable* renderable, _postLightingRenderables) {
renderable->renderPostLighting();
}
_postLightingRenderables.clear();
}
void DeferredLightingEffect::loadLightProgram(const char* name, bool limited, ProgramObject& program, LightLocations& locations) {
program.addShaderFromSourceFile(QGLShader::Vertex, PathUtils::resourcesPath() +
(limited ? "shaders/deferred_light_limited.vert" : "shaders/deferred_light.vert"));
program.addShaderFromSourceFile(QGLShader::Fragment, PathUtils::resourcesPath() + name);
program.link();
program.bind();
program.setUniformValue("diffuseMap", 0);
program.setUniformValue("normalMap", 1);
program.setUniformValue("specularMap", 2);
program.setUniformValue("depthMap", 3);
program.setUniformValue("shadowMap", 4);
locations.shadowDistances = program.uniformLocation("shadowDistances");
locations.shadowScale = program.uniformLocation("shadowScale");
locations.nearLocation = program.uniformLocation("near");
locations.depthScale = program.uniformLocation("depthScale");
locations.depthTexCoordOffset = program.uniformLocation("depthTexCoordOffset");
locations.depthTexCoordScale = program.uniformLocation("depthTexCoordScale");
locations.radius = program.uniformLocation("radius");
program.release();
}