mirror of
https://github.com/overte-org/overte.git
synced 2025-04-30 00:02:40 +02:00
79 lines
3 KiB
C++
79 lines
3 KiB
C++
//
|
|
// Interpolate.cpp
|
|
// libraries/shared/src
|
|
//
|
|
// Created by David Rowe on 10 Sep 2015.
|
|
// Copyright 2015 High Fidelity, Inc.
|
|
//
|
|
// Distributed under the Apache License, Version 2.0.
|
|
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
|
|
//
|
|
|
|
#include "Interpolate.h"
|
|
|
|
#include <assert.h>
|
|
#include <math.h>
|
|
|
|
#include "NumericalConstants.h"
|
|
|
|
float Interpolate::bezierInterpolate(float y1, float y2, float y3, float u) {
|
|
// https://en.wikipedia.org/wiki/Bezier_curve
|
|
assert(0.0f <= u && u <= 1.0f);
|
|
return (1.0f - u) * (1.0f - u) * y1 + 2.0f * (1.0f - u) * u * y2 + u * u * y3;
|
|
}
|
|
|
|
float Interpolate::interpolate3Points(float y1, float y2, float y3, float u) {
|
|
assert(0.0f <= u && u <= 1.0f);
|
|
|
|
if ((u <= 0.5f && y1 == y2) || (u >= 0.5f && y2 == y3)) {
|
|
// Flat line.
|
|
return y2;
|
|
}
|
|
|
|
if ((y2 >= y1 && y2 >= y3) || (y2 <= y1 && y2 <= y3)) {
|
|
// U or inverted-U shape.
|
|
// Make the slope at y2 = 0, which means that the control points half way between the value points have the value y2.
|
|
if (u <= 0.5f) {
|
|
return bezierInterpolate(y1, y2, y2, 2.0f * u);
|
|
} else {
|
|
return bezierInterpolate(y2, y2, y3, 2.0f * u - 1.0f);
|
|
}
|
|
|
|
} else {
|
|
// L or inverted and/or mirrored L shape.
|
|
// Make the slope at y2 be the slope between y1 and y3, up to a maximum of double the minimum of the slopes between y1
|
|
// and y2, and y2 and y3. Use this slope to calculate the control points half way between the value points.
|
|
// Note: The maximum ensures that the control points and therefore the interpolated values stay between y1 and y3.
|
|
float slope = y3 - y1;
|
|
float slope12 = y2 - y1;
|
|
float slope23 = y3 - y2;
|
|
if (fabsf(slope) > fabsf(2.0f * slope12)) {
|
|
slope = 2.0f * slope12;
|
|
} else if (fabsf(slope) > fabsf(2.0f * slope23)) {
|
|
slope = 2.0f * slope23;
|
|
}
|
|
|
|
if (u <= 0.5f) {
|
|
return bezierInterpolate(y1, y2 - slope / 2.0f, y2, 2.0f * u);
|
|
} else {
|
|
return bezierInterpolate(y2, y2 + slope / 2.0f, y3, 2.0f * u - 1.0f);
|
|
}
|
|
}
|
|
}
|
|
|
|
float Interpolate::simpleNonLinearBlend(float fraction) {
|
|
// uses arctan() to map a linear distribution in domain [0,1] to a non-linear blend (slow out, slow in) in range [0,1]
|
|
const float WIDTH = 20.0f;
|
|
const float INV_ARCTAN_WIDTH = 0.339875327433f; // 1 / (2 * atan(WIDTH/2))
|
|
return 0.5f + atanf(WIDTH * (fraction - 0.5f)) * INV_ARCTAN_WIDTH;
|
|
}
|
|
|
|
float Interpolate::calculateFadeRatio(quint64 start) {
|
|
const float FADE_TIME = 1.0f;
|
|
float t = 2.0f * std::min(((float)(usecTimestampNow() - start)) / ((float)(FADE_TIME * USECS_PER_SECOND)), 1.0f);
|
|
float fadeRatio = (t < 1.0f) ? 0.5f * powf(2.0f, 10.0f * (t - 1.0f)) : 0.5f * (-powf(2.0f, -10.0f * (t - 1.0f)) + 2.0f);
|
|
|
|
// The easing function isn't exactly 1 at t = 2, so we need to scale the whole function up slightly
|
|
const float EASING_SCALE = 1.001f;
|
|
return std::min(EASING_SCALE * fadeRatio, 1.0f);
|
|
}
|