overte/interface/src/Util.cpp
2014-03-11 17:26:58 -07:00

634 lines
21 KiB
C++

//
// util.cpp
// interface
//
// Created by Philip Rosedale on 8/24/12.
// Copyright (c) 2012 High Fidelity, Inc. All rights reserved.
//
#include <iostream>
#include <cstring>
#include <time.h>
#include <math.h>
#include <glm/glm.hpp>
#include <glm/gtc/noise.hpp>
#include <glm/gtx/quaternion.hpp>
#include <SharedUtil.h>
#include "InterfaceConfig.h"
#include "ui/TextRenderer.h"
#include "VoxelConstants.h"
#include "world.h"
#include "Util.h"
#ifdef _WIN32
int isnan(double value) { return _isnan(value); }
#else
int isnan(double value) { return std::isnan(value); }
#endif
using namespace std;
// no clue which versions are affected...
#define WORKAROUND_BROKEN_GLUT_STROKES
// see http://www.opengl.org/resources/libraries/glut/spec3/node78.html
void eulerToOrthonormals(glm::vec3 * angles, glm::vec3 * front, glm::vec3 * right, glm::vec3 * up) {
//
// Converts from three euler angles to the associated orthonormal vectors
//
// Angles contains (pitch, yaw, roll) in radians
//
// First, create the quaternion associated with these euler angles
glm::quat q(glm::vec3(angles->x, -(angles->y), angles->z));
// Next, create a rotation matrix from that quaternion
glm::mat4 rotation;
rotation = glm::mat4_cast(q);
// Transform the original vectors by the rotation matrix to get the new vectors
glm::vec4 qup(0,1,0,0);
glm::vec4 qright(-1,0,0,0);
glm::vec4 qfront(0,0,1,0);
glm::vec4 upNew = qup*rotation;
glm::vec4 rightNew = qright*rotation;
glm::vec4 frontNew = qfront*rotation;
// Copy the answers to output vectors
up->x = upNew.x; up->y = upNew.y; up->z = upNew.z;
right->x = rightNew.x; right->y = rightNew.y; right->z = rightNew.z;
front->x = frontNew.x; front->y = frontNew.y; front->z = frontNew.z;
}
void printVector(glm::vec3 vec) {
printf("%4.2f, %4.2f, %4.2f\n", vec.x, vec.y, vec.z);
}
// Return the azimuth angle (in radians) between two points.
float azimuth_to(glm::vec3 head_pos, glm::vec3 source_pos) {
return atan2(head_pos.x - source_pos.x, head_pos.z - source_pos.z);
}
// Return the angle (in radians) between the head and an object in the scene.
// The value is zero if you are looking right at it.
// The angle is negative if the object is to your right.
float angle_to(glm::vec3 head_pos, glm::vec3 source_pos, float render_yaw, float head_yaw) {
return atan2(head_pos.x - source_pos.x, head_pos.z - source_pos.z) + render_yaw + head_yaw;
}
// Helper function returns the positive angle (in radians) between two 3D vectors
float angleBetween(const glm::vec3& v1, const glm::vec3& v2) {
return acosf((glm::dot(v1, v2)) / (glm::length(v1) * glm::length(v2)));
}
// Helper function return the rotation from the first vector onto the second
glm::quat rotationBetween(const glm::vec3& v1, const glm::vec3& v2) {
float angle = angleBetween(v1, v2);
if (isnan(angle) || angle < EPSILON) {
return glm::quat();
}
glm::vec3 axis;
if (angle > 179.99f * RADIANS_PER_DEGREE) { // 180 degree rotation; must use another axis
axis = glm::cross(v1, glm::vec3(1.0f, 0.0f, 0.0f));
float axisLength = glm::length(axis);
if (axisLength < EPSILON) { // parallel to x; y will work
axis = glm::normalize(glm::cross(v1, glm::vec3(0.0f, 1.0f, 0.0f)));
} else {
axis /= axisLength;
}
} else {
axis = glm::normalize(glm::cross(v1, v2));
}
return glm::angleAxis(angle, axis);
}
glm::vec3 extractTranslation(const glm::mat4& matrix) {
return glm::vec3(matrix[3][0], matrix[3][1], matrix[3][2]);
}
void setTranslation(glm::mat4& matrix, const glm::vec3& translation) {
matrix[3][0] = translation.x;
matrix[3][1] = translation.y;
matrix[3][2] = translation.z;
}
glm::quat extractRotation(const glm::mat4& matrix, bool assumeOrthogonal) {
// uses the iterative polar decomposition algorithm described by Ken Shoemake at
// http://www.cs.wisc.edu/graphics/Courses/838-s2002/Papers/polar-decomp.pdf
// code adapted from Clyde, https://github.com/threerings/clyde/blob/master/src/main/java/com/threerings/math/Matrix4f.java
// start with the contents of the upper 3x3 portion of the matrix
glm::mat3 upper = glm::mat3(matrix);
if (!assumeOrthogonal) {
for (int i = 0; i < 10; i++) {
// store the results of the previous iteration
glm::mat3 previous = upper;
// compute average of the matrix with its inverse transpose
float sd00 = previous[1][1] * previous[2][2] - previous[2][1] * previous[1][2];
float sd10 = previous[0][1] * previous[2][2] - previous[2][1] * previous[0][2];
float sd20 = previous[0][1] * previous[1][2] - previous[1][1] * previous[0][2];
float det = previous[0][0] * sd00 + previous[2][0] * sd20 - previous[1][0] * sd10;
if (fabs(det) == 0.0f) {
// determinant is zero; matrix is not invertible
break;
}
float hrdet = 0.5f / det;
upper[0][0] = +sd00 * hrdet + previous[0][0] * 0.5f;
upper[1][0] = -sd10 * hrdet + previous[1][0] * 0.5f;
upper[2][0] = +sd20 * hrdet + previous[2][0] * 0.5f;
upper[0][1] = -(previous[1][0] * previous[2][2] - previous[2][0] * previous[1][2]) * hrdet + previous[0][1] * 0.5f;
upper[1][1] = +(previous[0][0] * previous[2][2] - previous[2][0] * previous[0][2]) * hrdet + previous[1][1] * 0.5f;
upper[2][1] = -(previous[0][0] * previous[1][2] - previous[1][0] * previous[0][2]) * hrdet + previous[2][1] * 0.5f;
upper[0][2] = +(previous[1][0] * previous[2][1] - previous[2][0] * previous[1][1]) * hrdet + previous[0][2] * 0.5f;
upper[1][2] = -(previous[0][0] * previous[2][1] - previous[2][0] * previous[0][1]) * hrdet + previous[1][2] * 0.5f;
upper[2][2] = +(previous[0][0] * previous[1][1] - previous[1][0] * previous[0][1]) * hrdet + previous[2][2] * 0.5f;
// compute the difference; if it's small enough, we're done
glm::mat3 diff = upper - previous;
if (diff[0][0] * diff[0][0] + diff[1][0] * diff[1][0] + diff[2][0] * diff[2][0] + diff[0][1] * diff[0][1] +
diff[1][1] * diff[1][1] + diff[2][1] * diff[2][1] + diff[0][2] * diff[0][2] + diff[1][2] * diff[1][2] +
diff[2][2] * diff[2][2] < EPSILON) {
break;
}
}
}
// now that we have a nice orthogonal matrix, we can extract the rotation quaternion
// using the method described in http://en.wikipedia.org/wiki/Rotation_matrix#Conversions
float x2 = fabs(1.0f + upper[0][0] - upper[1][1] - upper[2][2]);
float y2 = fabs(1.0f - upper[0][0] + upper[1][1] - upper[2][2]);
float z2 = fabs(1.0f - upper[0][0] - upper[1][1] + upper[2][2]);
float w2 = fabs(1.0f + upper[0][0] + upper[1][1] + upper[2][2]);
return glm::normalize(glm::quat(0.5f * sqrtf(w2),
0.5f * sqrtf(x2) * (upper[1][2] >= upper[2][1] ? 1.0f : -1.0f),
0.5f * sqrtf(y2) * (upper[2][0] >= upper[0][2] ? 1.0f : -1.0f),
0.5f * sqrtf(z2) * (upper[0][1] >= upper[1][0] ? 1.0f : -1.0f)));
}
glm::vec3 extractScale(const glm::mat4& matrix) {
return glm::vec3(glm::length(matrix[0]), glm::length(matrix[1]), glm::length(matrix[2]));
}
float extractUniformScale(const glm::mat4& matrix) {
return extractUniformScale(extractScale(matrix));
}
float extractUniformScale(const glm::vec3& scale) {
return (scale.x + scale.y + scale.z) / 3.0f;
}
// Draw a 3D vector floating in space
void drawVector(glm::vec3 * vector) {
glDisable(GL_LIGHTING);
glEnable(GL_POINT_SMOOTH);
glPointSize(3.0);
glLineWidth(2.0);
// Draw axes
glBegin(GL_LINES);
glColor3f(1,0,0);
glVertex3f(0,0,0);
glVertex3f(1,0,0);
glColor3f(0,1,0);
glVertex3f(0,0,0);
glVertex3f(0, 1, 0);
glColor3f(0,0,1);
glVertex3f(0,0,0);
glVertex3f(0, 0, 1);
glEnd();
// Draw the vector itself
glBegin(GL_LINES);
glColor3f(1,1,1);
glVertex3f(0,0,0);
glVertex3f(vector->x, vector->y, vector->z);
glEnd();
// Draw spheres for magnitude
glPushMatrix();
glColor3f(1,0,0);
glTranslatef(vector->x, 0, 0);
glutSolidSphere(0.02, 10, 10);
glColor3f(0,1,0);
glTranslatef(-vector->x, vector->y, 0);
glutSolidSphere(0.02, 10, 10);
glColor3f(0,0,1);
glTranslatef(0, -vector->y, vector->z);
glutSolidSphere(0.02, 10, 10);
glPopMatrix();
}
void renderWorldBox() {
// Show edge of world
float red[] = {1, 0, 0};
float green[] = {0, 1, 0};
float blue[] = {0, 0, 1};
float gray[] = {0.5, 0.5, 0.5};
glDisable(GL_LIGHTING);
glLineWidth(1.0);
glBegin(GL_LINES);
glColor3fv(red);
glVertex3f(0, 0, 0);
glVertex3f(TREE_SCALE, 0, 0);
glColor3fv(green);
glVertex3f(0, 0, 0);
glVertex3f(0, TREE_SCALE, 0);
glColor3fv(blue);
glVertex3f(0, 0, 0);
glVertex3f(0, 0, TREE_SCALE);
glColor3fv(gray);
glVertex3f(0, 0, TREE_SCALE);
glVertex3f(TREE_SCALE, 0, TREE_SCALE);
glVertex3f(TREE_SCALE, 0, TREE_SCALE);
glVertex3f(TREE_SCALE, 0, 0);
glEnd();
// Draw meter markers along the 3 axis to help with measuring things
const float MARKER_DISTANCE = 1.f;
const float MARKER_RADIUS = 0.05f;
glEnable(GL_LIGHTING);
glPushMatrix();
glTranslatef(MARKER_DISTANCE, 0, 0);
glColor3fv(red);
glutSolidSphere(MARKER_RADIUS, 10, 10);
glPopMatrix();
glPushMatrix();
glTranslatef(0, MARKER_DISTANCE, 0);
glColor3fv(green);
glutSolidSphere(MARKER_RADIUS, 10, 10);
glPopMatrix();
glPushMatrix();
glTranslatef(0, 0, MARKER_DISTANCE);
glColor3fv(blue);
glutSolidSphere(MARKER_RADIUS, 10, 10);
glPopMatrix();
glPushMatrix();
glColor3fv(gray);
glTranslatef(MARKER_DISTANCE, 0, MARKER_DISTANCE);
glutSolidSphere(MARKER_RADIUS, 10, 10);
glPopMatrix();
}
double diffclock(timeval *clock1,timeval *clock2)
{
double diffms = (clock2->tv_sec - clock1->tv_sec) * 1000.0;
diffms += (clock2->tv_usec - clock1->tv_usec) / 1000.0; // us to ms
return diffms;
}
// Return a random vector of average length 1
const glm::vec3 randVector() {
return glm::vec3(randFloat() - 0.5f, randFloat() - 0.5f, randFloat() - 0.5f) * 2.f;
}
static TextRenderer* textRenderer(int mono) {
static TextRenderer* monoRenderer = new TextRenderer(MONO_FONT_FAMILY);
static TextRenderer* proportionalRenderer = new TextRenderer(SANS_FONT_FAMILY, -1, -1, false, TextRenderer::SHADOW_EFFECT);
static TextRenderer* inconsolataRenderer = new TextRenderer(INCONSOLATA_FONT_FAMILY, -1, QFont::Bold, false);
switch (mono) {
case 1:
return monoRenderer;
case 2:
return inconsolataRenderer;
case 0:
default:
return proportionalRenderer;
}
}
int widthText(float scale, int mono, char const* string) {
return textRenderer(mono)->computeWidth(string) * (scale / 0.10);
}
float widthChar(float scale, int mono, char ch) {
return textRenderer(mono)->computeWidth(ch) * (scale / 0.10);
}
void drawText(int x, int y, float scale, float radians, int mono,
char const* string, const float* color) {
//
// Draws text on screen as stroked so it can be resized
//
glPushMatrix();
glTranslatef(static_cast<float>(x), static_cast<float>(y), 0.0f);
glColor3fv(color);
glRotated(double(radians * DEGREES_PER_RADIAN), 0.0, 0.0, 1.0);
glScalef(scale / 0.1f, scale / 0.1f, 1.f);
textRenderer(mono)->draw(0, 0, string);
glPopMatrix();
}
void drawvec3(int x, int y, float scale, float radians, float thick, int mono, glm::vec3 vec, float r, float g, float b) {
//
// Draws vec3 on screen as stroked so it can be resized
//
char vectext[20];
sprintf(vectext,"%3.1f,%3.1f,%3.1f", vec.x, vec.y, vec.z);
int len, i;
glPushMatrix();
glTranslatef(static_cast<float>(x), static_cast<float>(y), 0);
glColor3f(r,g,b);
glRotated(180.0 + double(radians * DEGREES_PER_RADIAN), 0.0, 0.0, 1.0);
glRotated(180.0, 0.0, 1.0, 0.0);
glLineWidth(thick);
glScalef(scale, scale, 1.f);
len = (int) strlen(vectext);
for (i = 0; i < len; i++) {
if (!mono) glutStrokeCharacter(GLUT_STROKE_ROMAN, int(vectext[i]));
else glutStrokeCharacter(GLUT_STROKE_MONO_ROMAN, int(vectext[i]));
}
glPopMatrix();
}
void renderCollisionOverlay(int width, int height, float magnitude) {
const float MIN_VISIBLE_COLLISION = 0.01f;
if (magnitude > MIN_VISIBLE_COLLISION) {
glColor4f(0, 0, 0, magnitude);
glBegin(GL_QUADS);
glVertex2f(0, 0);
glVertex2d(width, 0);
glVertex2d(width, height);
glVertex2d(0, height);
glEnd();
}
}
void renderSphereOutline(glm::vec3 position, float radius, int numSides, glm::vec3 cameraPosition) {
glm::vec3 vectorToPosition(glm::normalize(position - cameraPosition));
glm::vec3 right = glm::cross(vectorToPosition, glm::vec3(0.0f, 1.0f, 0.0f));
glm::vec3 up = glm::cross(right, vectorToPosition);
glBegin(GL_LINE_STRIP);
for (int i=0; i<numSides+1; i++) {
float r = ((float)i / (float)numSides) * TWO_PI;
float s = radius * sinf(r);
float c = radius * cosf(r);
glVertex3f
(
position.x + right.x * s + up.x * c,
position.y + right.y * s + up.y * c,
position.z + right.z * s + up.z * c
);
}
glEnd();
}
void renderCircle(glm::vec3 position, float radius, glm::vec3 surfaceNormal, int numSides) {
glm::vec3 perp1 = glm::vec3(surfaceNormal.y, surfaceNormal.z, surfaceNormal.x);
glm::vec3 perp2 = glm::vec3(surfaceNormal.z, surfaceNormal.x, surfaceNormal.y);
glBegin(GL_LINE_STRIP);
for (int i=0; i<numSides+1; i++) {
float r = ((float)i / (float)numSides) * TWO_PI;
float s = radius * sinf(r);
float c = radius * cosf(r);
glVertex3f
(
position.x + perp1.x * s + perp2.x * c,
position.y + perp1.y * s + perp2.y * c,
position.z + perp1.z * s + perp2.z * c
);
}
glEnd();
}
void renderBevelCornersRect(int x, int y, int width, int height, int bevelDistance) {
glBegin(GL_POLYGON);
// left side
glVertex2f(x, y + bevelDistance);
glVertex2f(x, y + height - bevelDistance);
// top side
glVertex2f(x + bevelDistance, y + height);
glVertex2f(x + width - bevelDistance, y + height);
// right
glVertex2f(x + width, y + height - bevelDistance);
glVertex2f(x + width, y + bevelDistance);
// bottom
glVertex2f(x + width - bevelDistance, y);
glVertex2f(x +bevelDistance, y);
glEnd();
}
void renderRoundedCornersRect(int x, int y, int width, int height, int radius, int numPointsCorner) {
#define MAX_POINTS_CORNER 50
// At least "2" is needed
if (numPointsCorner <= 1) {
return;
}
if (numPointsCorner > MAX_POINTS_CORNER) {
numPointsCorner = MAX_POINTS_CORNER;
}
// Precompute sin and cos for [0, PI/2) for the number of points (numPointCorner)
double radiusTimesSin[MAX_POINTS_CORNER];
double radiusTimesCos[MAX_POINTS_CORNER];
int i = 0;
for (int i = 0; i < numPointsCorner; i++) {
double t = (double)i * (double)PI_OVER_TWO / (double)(numPointsCorner - 1);
radiusTimesSin[i] = radius * sin(t);
radiusTimesCos[i] = radius * cos(t);
}
glm::dvec2 cornerCenter;
glBegin(GL_POINTS);
// Top left corner
cornerCenter = glm::vec2(x + radius, y + height - radius);
for (i = 0; i < numPointsCorner; i++) {
glVertex2d(cornerCenter.x - radiusTimesCos[i], cornerCenter.y + radiusTimesSin[i]);
}
// Top rigth corner
cornerCenter = glm::vec2(x + width - radius, y + height - radius);
for (i = 0; i < numPointsCorner; i++) {
glVertex2d(cornerCenter.x + radiusTimesSin[i], cornerCenter.y + radiusTimesCos[i]);
}
// Bottom right
cornerCenter = glm::vec2(x + width - radius, y + radius);
for (i = 0; i < numPointsCorner; i++) {
glVertex2d(cornerCenter.x + radiusTimesCos[i], cornerCenter.y - radiusTimesSin[i]);
}
// Bottom left
cornerCenter = glm::vec2(x + radius, y + radius);
for (i = 0; i < numPointsCorner; i++) {
glVertex2d(cornerCenter.x - radiusTimesSin[i], cornerCenter.y - radiusTimesCos[i]);
}
glEnd();
}
void renderOrientationDirections(glm::vec3 position, const glm::quat& orientation, float size) {
glm::vec3 pRight = position + orientation * IDENTITY_RIGHT * size;
glm::vec3 pUp = position + orientation * IDENTITY_UP * size;
glm::vec3 pFront = position + orientation * IDENTITY_FRONT * size;
glColor3f(1.0f, 0.0f, 0.0f);
glBegin(GL_LINE_STRIP);
glVertex3f(position.x, position.y, position.z);
glVertex3f(pRight.x, pRight.y, pRight.z);
glEnd();
glColor3f(0.0f, 1.0f, 0.0f);
glBegin(GL_LINE_STRIP);
glVertex3f(position.x, position.y, position.z);
glVertex3f(pUp.x, pUp.y, pUp.z);
glEnd();
glColor3f(0.0f, 0.0f, 1.0f);
glBegin(GL_LINE_STRIP);
glVertex3f(position.x, position.y, position.z);
glVertex3f(pFront.x, pFront.y, pFront.z);
glEnd();
}
bool closeEnoughForGovernmentWork(float a, float b) {
float distance = std::abs(a-b);
//qDebug("closeEnoughForGovernmentWork() a=%1.10f b=%1.10f distance=%1.10f\n",a,b,distance);
return (distance < 0.00001f);
}
// Do some basic timing tests and report the results
void runTimingTests() {
// How long does it take to make a call to get the time?
const int numTests = 1000000;
int iResults[numTests];
float fTest = 1.0;
float fResults[numTests];
timeval startTime, endTime;
float elapsedMsecs;
gettimeofday(&startTime, NULL);
for (int i = 1; i < numTests; i++) {
gettimeofday(&endTime, NULL);
}
elapsedMsecs = diffclock(&startTime, &endTime);
qDebug("gettimeofday() usecs: %f", 1000.0f * elapsedMsecs / (float) numTests);
// Random number generation
gettimeofday(&startTime, NULL);
for (int i = 1; i < numTests; i++) {
iResults[i] = rand();
}
gettimeofday(&endTime, NULL);
elapsedMsecs = diffclock(&startTime, &endTime);
qDebug("rand() stored in array usecs: %f", 1000.0f * elapsedMsecs / (float) numTests);
// Random number generation using randFloat()
gettimeofday(&startTime, NULL);
for (int i = 1; i < numTests; i++) {
fResults[i] = randFloat();
}
gettimeofday(&endTime, NULL);
elapsedMsecs = diffclock(&startTime, &endTime);
qDebug("randFloat() stored in array usecs: %f", 1000.0f * elapsedMsecs / (float) numTests);
// PowF function
fTest = 1145323.2342f;
gettimeofday(&startTime, NULL);
for (int i = 1; i < numTests; i++) {
fTest = powf(fTest, 0.5f);
}
gettimeofday(&endTime, NULL);
elapsedMsecs = diffclock(&startTime, &endTime);
qDebug("powf(f, 0.5) usecs: %f", 1000.0f * elapsedMsecs / (float) numTests);
// Vector Math
float distance;
glm::vec3 pointA(randVector()), pointB(randVector());
gettimeofday(&startTime, NULL);
for (int i = 1; i < numTests; i++) {
//glm::vec3 temp = pointA - pointB;
//float distanceSquared = glm::dot(temp, temp);
distance = glm::distance(pointA, pointB);
}
gettimeofday(&endTime, NULL);
elapsedMsecs = diffclock(&startTime, &endTime);
qDebug("vector math usecs: %f [%f msecs total for %d tests]",
1000.0f * elapsedMsecs / (float) numTests, elapsedMsecs, numTests);
// Vec3 test
glm::vec3 vecA(randVector()), vecB(randVector());
float result;
gettimeofday(&startTime, NULL);
for (int i = 1; i < numTests; i++) {
glm::vec3 temp = vecA-vecB;
result = glm::dot(temp,temp);
}
gettimeofday(&endTime, NULL);
elapsedMsecs = diffclock(&startTime, &endTime);
qDebug("vec3 assign and dot() usecs: %f", 1000.0f * elapsedMsecs / (float) numTests);
}
float loadSetting(QSettings* settings, const char* name, float defaultValue) {
float value = settings->value(name, defaultValue).toFloat();
if (isnan(value)) {
value = defaultValue;
}
return value;
}
bool rayIntersectsSphere(const glm::vec3& rayStarting, const glm::vec3& rayNormalizedDirection,
const glm::vec3& sphereCenter, float sphereRadius, float& distance) {
glm::vec3 relativeOrigin = rayStarting - sphereCenter;
// compute the b, c terms of the quadratic equation (a is dot(direction, direction), which is one)
float b = 2.0f * glm::dot(rayNormalizedDirection, relativeOrigin);
float c = glm::dot(relativeOrigin, relativeOrigin) - sphereRadius * sphereRadius;
// compute the radicand of the quadratic. if less than zero, there's no intersection
float radicand = b * b - 4.0f * c;
if (radicand < 0.0f) {
return false;
}
// compute the first solution of the quadratic
float root = sqrtf(radicand);
float firstSolution = -b - root;
if (firstSolution > 0.0f) {
distance = firstSolution / 2.0f;
return true; // origin is outside the sphere
}
// now try the second solution
float secondSolution = -b + root;
if (secondSolution > 0.0f) {
distance = 0.0f;
return true; // origin is inside the sphere
}
return false;
}
bool pointInSphere(glm::vec3& point, glm::vec3& sphereCenter, double sphereRadius) {
glm::vec3 diff = point - sphereCenter;
double mag = sqrt(glm::dot(diff, diff));
if (mag <= sphereRadius) {
return true;
}
return false;
}