overte/libraries/entities/src/EntityItem.cpp

1149 lines
50 KiB
C++

//
// EntityItem.cpp
// libraries/models/src
//
// Created by Brad Hefta-Gaub on 12/4/13.
// Copyright 2013 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include <QtCore/QObject>
#include <ByteCountCoding.h>
#include <GLMHelpers.h>
#include <Octree.h>
#include <PhysicsHelpers.h>
#include <RegisteredMetaTypes.h>
#include <SharedUtil.h> // usecTimestampNow()
#include "EntityScriptingInterface.h"
#include "EntityItem.h"
#include "EntityTree.h"
bool EntityItem::_sendPhysicsUpdates = true;
void EntityItem::initFromEntityItemID(const EntityItemID& entityItemID) {
_id = entityItemID.id;
_creatorTokenID = entityItemID.creatorTokenID;
// init values with defaults before calling setProperties
quint64 now = usecTimestampNow();
_lastSimulated = now;
_lastUpdated = now;
_lastEdited = 0;
_lastEditedFromRemote = 0;
_lastEditedFromRemoteInRemoteTime = 0;
_created = UNKNOWN_CREATED_TIME;
_changedOnServer = 0;
_position = ENTITY_ITEM_ZERO_VEC3;
_dimensions = ENTITY_ITEM_DEFAULT_DIMENSIONS;
_density = ENTITY_ITEM_DEFAULT_DENSITY;
_rotation = ENTITY_ITEM_DEFAULT_ROTATION;
_glowLevel = ENTITY_ITEM_DEFAULT_GLOW_LEVEL;
_localRenderAlpha = ENTITY_ITEM_DEFAULT_LOCAL_RENDER_ALPHA;
_velocity = ENTITY_ITEM_DEFAULT_VELOCITY;
_gravity = ENTITY_ITEM_DEFAULT_GRAVITY;
_damping = ENTITY_ITEM_DEFAULT_DAMPING;
_lifetime = ENTITY_ITEM_DEFAULT_LIFETIME;
_script = ENTITY_ITEM_DEFAULT_SCRIPT;
_registrationPoint = ENTITY_ITEM_DEFAULT_REGISTRATION_POINT;
_angularVelocity = ENTITY_ITEM_DEFAULT_ANGULAR_VELOCITY;
_angularDamping = ENTITY_ITEM_DEFAULT_ANGULAR_DAMPING;
_visible = ENTITY_ITEM_DEFAULT_VISIBLE;
_ignoreForCollisions = ENTITY_ITEM_DEFAULT_IGNORE_FOR_COLLISIONS;
_collisionsWillMove = ENTITY_ITEM_DEFAULT_COLLISIONS_WILL_MOVE;
_locked = ENTITY_ITEM_DEFAULT_LOCKED;
_userData = ENTITY_ITEM_DEFAULT_USER_DATA;
_attribution = ENTITY_ITEM_DEFAULT_ATTRIBUTION;
}
EntityItem::EntityItem(const EntityItemID& entityItemID) {
_type = EntityTypes::Unknown;
quint64 now = usecTimestampNow();
_lastSimulated = now;
_lastUpdated = now;
_lastEdited = 0;
_lastEditedFromRemote = 0;
_lastEditedFromRemoteInRemoteTime = 0;
_created = UNKNOWN_CREATED_TIME;
_dirtyFlags = 0;
_changedOnServer = 0;
_element = NULL;
initFromEntityItemID(entityItemID);
}
EntityItem::EntityItem(const EntityItemID& entityItemID, const EntityItemProperties& properties) {
_type = EntityTypes::Unknown;
quint64 now = usecTimestampNow();
_lastSimulated = now;
_lastUpdated = now;
_lastEdited = 0;
_lastEditedFromRemote = 0;
_lastEditedFromRemoteInRemoteTime = 0;
_created = UNKNOWN_CREATED_TIME;
_dirtyFlags = 0;
_changedOnServer = 0;
_element = NULL;
initFromEntityItemID(entityItemID);
setProperties(properties);
}
EntityItem::~EntityItem() {
// be sure to clean up _physicsInfo before calling this dtor
assert(_physicsInfo == NULL);
assert(_element == NULL);
}
EntityPropertyFlags EntityItem::getEntityProperties(EncodeBitstreamParams& params) const {
EntityPropertyFlags requestedProperties;
requestedProperties += PROP_POSITION;
requestedProperties += PROP_DIMENSIONS; // NOTE: PROP_RADIUS obsolete
requestedProperties += PROP_ROTATION;
requestedProperties += PROP_DENSITY;
requestedProperties += PROP_VELOCITY;
requestedProperties += PROP_GRAVITY;
requestedProperties += PROP_DAMPING;
requestedProperties += PROP_LIFETIME;
requestedProperties += PROP_SCRIPT;
requestedProperties += PROP_REGISTRATION_POINT;
requestedProperties += PROP_ANGULAR_VELOCITY;
requestedProperties += PROP_ANGULAR_DAMPING;
requestedProperties += PROP_VISIBLE;
requestedProperties += PROP_IGNORE_FOR_COLLISIONS;
requestedProperties += PROP_COLLISIONS_WILL_MOVE;
requestedProperties += PROP_LOCKED;
requestedProperties += PROP_USER_DATA;
requestedProperties += PROP_ATTRIBUTION;
return requestedProperties;
}
OctreeElement::AppendState EntityItem::appendEntityData(OctreePacketData* packetData, EncodeBitstreamParams& params,
EntityTreeElementExtraEncodeData* entityTreeElementExtraEncodeData) const {
// ALL this fits...
// object ID [16 bytes]
// ByteCountCoded(type code) [~1 byte]
// last edited [8 bytes]
// ByteCountCoded(last_edited to last_updated delta) [~1-8 bytes]
// PropertyFlags<>( everything ) [1-2 bytes]
// ~27-35 bytes...
OctreeElement::AppendState appendState = OctreeElement::COMPLETED; // assume the best
// encode our ID as a byte count coded byte stream
QByteArray encodedID = getID().toRfc4122();
// encode our type as a byte count coded byte stream
ByteCountCoded<quint32> typeCoder = getType();
QByteArray encodedType = typeCoder;
// last updated (animations, non-physics changes)
quint64 updateDelta = getLastUpdated() <= getLastEdited() ? 0 : getLastUpdated() - getLastEdited();
ByteCountCoded<quint64> updateDeltaCoder = updateDelta;
QByteArray encodedUpdateDelta = updateDeltaCoder;
// last simulated (velocity, angular velocity, physics changes)
quint64 simulatedDelta = getLastSimulated() <= getLastEdited() ? 0 : getLastSimulated() - getLastEdited();
ByteCountCoded<quint64> simulatedDeltaCoder = simulatedDelta;
QByteArray encodedSimulatedDelta = simulatedDeltaCoder;
EntityPropertyFlags propertyFlags(PROP_LAST_ITEM);
EntityPropertyFlags requestedProperties = getEntityProperties(params);
EntityPropertyFlags propertiesDidntFit = requestedProperties;
// If we are being called for a subsequent pass at appendEntityData() that failed to completely encode this item,
// then our entityTreeElementExtraEncodeData should include data about which properties we need to append.
if (entityTreeElementExtraEncodeData && entityTreeElementExtraEncodeData->entities.contains(getEntityItemID())) {
requestedProperties = entityTreeElementExtraEncodeData->entities.value(getEntityItemID());
}
LevelDetails entityLevel = packetData->startLevel();
quint64 lastEdited = getLastEdited();
#ifdef WANT_DEBUG
float editedAgo = getEditedAgo();
QString agoAsString = formatSecondsElapsed(editedAgo);
qDebug() << "Writing entity " << getEntityItemID() << " to buffer, lastEdited =" << lastEdited
<< " ago=" << editedAgo << "seconds - " << agoAsString;
#endif
bool successIDFits = false;
bool successTypeFits = false;
bool successCreatedFits = false;
bool successLastEditedFits = false;
bool successLastUpdatedFits = false;
bool successLastSimulatedFits = false;
bool successPropertyFlagsFits = false;
int propertyFlagsOffset = 0;
int oldPropertyFlagsLength = 0;
QByteArray encodedPropertyFlags;
int propertyCount = 0;
successIDFits = packetData->appendValue(encodedID);
if (successIDFits) {
successTypeFits = packetData->appendValue(encodedType);
}
if (successTypeFits) {
successCreatedFits = packetData->appendValue(_created);
}
if (successCreatedFits) {
successLastEditedFits = packetData->appendValue(lastEdited);
}
if (successLastEditedFits) {
successLastUpdatedFits = packetData->appendValue(encodedUpdateDelta);
}
if (successLastUpdatedFits) {
successLastSimulatedFits = packetData->appendValue(encodedSimulatedDelta);
}
if (successLastSimulatedFits) {
propertyFlagsOffset = packetData->getUncompressedByteOffset();
encodedPropertyFlags = propertyFlags;
oldPropertyFlagsLength = encodedPropertyFlags.length();
successPropertyFlagsFits = packetData->appendValue(encodedPropertyFlags);
}
bool headerFits = successIDFits && successTypeFits && successCreatedFits && successLastEditedFits
&& successLastUpdatedFits && successPropertyFlagsFits;
int startOfEntityItemData = packetData->getUncompressedByteOffset();
if (headerFits) {
bool successPropertyFits;
propertyFlags -= PROP_LAST_ITEM; // clear the last item for now, we may or may not set it as the actual item
// These items would go here once supported....
// PROP_PAGED_PROPERTY,
// PROP_CUSTOM_PROPERTIES_INCLUDED,
APPEND_ENTITY_PROPERTY(PROP_POSITION, appendPosition, getPosition());
APPEND_ENTITY_PROPERTY(PROP_DIMENSIONS, appendValue, getDimensions()); // NOTE: PROP_RADIUS obsolete
APPEND_ENTITY_PROPERTY(PROP_ROTATION, appendValue, getRotation());
APPEND_ENTITY_PROPERTY(PROP_DENSITY, appendValue, getDensity());
APPEND_ENTITY_PROPERTY(PROP_VELOCITY, appendValue, getVelocity());
APPEND_ENTITY_PROPERTY(PROP_GRAVITY, appendValue, getGravity());
APPEND_ENTITY_PROPERTY(PROP_DAMPING, appendValue, getDamping());
APPEND_ENTITY_PROPERTY(PROP_LIFETIME, appendValue, getLifetime());
APPEND_ENTITY_PROPERTY(PROP_SCRIPT, appendValue, getScript());
APPEND_ENTITY_PROPERTY(PROP_REGISTRATION_POINT, appendValue, getRegistrationPoint());
APPEND_ENTITY_PROPERTY(PROP_ANGULAR_VELOCITY, appendValue, getAngularVelocity());
APPEND_ENTITY_PROPERTY(PROP_ANGULAR_DAMPING, appendValue, getAngularDamping());
APPEND_ENTITY_PROPERTY(PROP_VISIBLE, appendValue, getVisible());
APPEND_ENTITY_PROPERTY(PROP_IGNORE_FOR_COLLISIONS, appendValue, getIgnoreForCollisions());
APPEND_ENTITY_PROPERTY(PROP_COLLISIONS_WILL_MOVE, appendValue, getCollisionsWillMove());
APPEND_ENTITY_PROPERTY(PROP_LOCKED, appendValue, getLocked());
APPEND_ENTITY_PROPERTY(PROP_USER_DATA, appendValue, getUserData());
appendSubclassData(packetData, params, entityTreeElementExtraEncodeData,
requestedProperties,
propertyFlags,
propertiesDidntFit,
propertyCount,
appendState);
APPEND_ENTITY_PROPERTY(PROP_ATTRIBUTION, appendValue, getAttribution());
}
if (propertyCount > 0) {
int endOfEntityItemData = packetData->getUncompressedByteOffset();
encodedPropertyFlags = propertyFlags;
int newPropertyFlagsLength = encodedPropertyFlags.length();
packetData->updatePriorBytes(propertyFlagsOffset,
(const unsigned char*)encodedPropertyFlags.constData(), encodedPropertyFlags.length());
// if the size of the PropertyFlags shrunk, we need to shift everything down to front of packet.
if (newPropertyFlagsLength < oldPropertyFlagsLength) {
int oldSize = packetData->getUncompressedSize();
const unsigned char* modelItemData = packetData->getUncompressedData(propertyFlagsOffset + oldPropertyFlagsLength);
int modelItemDataLength = endOfEntityItemData - startOfEntityItemData;
int newEntityItemDataStart = propertyFlagsOffset + newPropertyFlagsLength;
packetData->updatePriorBytes(newEntityItemDataStart, modelItemData, modelItemDataLength);
int newSize = oldSize - (oldPropertyFlagsLength - newPropertyFlagsLength);
packetData->setUncompressedSize(newSize);
} else {
assert(newPropertyFlagsLength == oldPropertyFlagsLength); // should not have grown
}
packetData->endLevel(entityLevel);
} else {
packetData->discardLevel(entityLevel);
appendState = OctreeElement::NONE; // if we got here, then we didn't include the item
}
// If any part of the model items didn't fit, then the element is considered partial
if (appendState != OctreeElement::COMPLETED) {
// add this item into our list for the next appendElementData() pass
entityTreeElementExtraEncodeData->entities.insert(getEntityItemID(), propertiesDidntFit);
}
return appendState;
}
// TODO: My goal is to get rid of this concept completely. The old code (and some of the current code) used this
// result to calculate if a packet being sent to it was potentially bad or corrupt. I've adjusted this to now
// only consider the minimum header bytes as being required. But it would be preferable to completely eliminate
// this logic from the callers.
int EntityItem::expectedBytes() {
// Header bytes
// object ID [16 bytes]
// ByteCountCoded(type code) [~1 byte]
// last edited [8 bytes]
// ByteCountCoded(last_edited to last_updated delta) [~1-8 bytes]
// PropertyFlags<>( everything ) [1-2 bytes]
// ~27-35 bytes...
const int MINIMUM_HEADER_BYTES = 27;
return MINIMUM_HEADER_BYTES;
}
int EntityItem::readEntityDataFromBuffer(const unsigned char* data, int bytesLeftToRead, ReadBitstreamToTreeParams& args) {
if (args.bitstreamVersion < VERSION_ENTITIES_SUPPORT_SPLIT_MTU) {
// NOTE: This shouldn't happen. The only versions of the bit stream that didn't support split mtu buffers should
// be handled by the model subclass and shouldn't call this routine.
qDebug() << "EntityItem::readEntityDataFromBuffer()... "
"ERROR CASE...args.bitstreamVersion < VERSION_ENTITIES_SUPPORT_SPLIT_MTU";
return 0;
}
// Header bytes
// object ID [16 bytes]
// ByteCountCoded(type code) [~1 byte]
// last edited [8 bytes]
// ByteCountCoded(last_edited to last_updated delta) [~1-8 bytes]
// PropertyFlags<>( everything ) [1-2 bytes]
// ~27-35 bytes...
const int MINIMUM_HEADER_BYTES = 27;
int bytesRead = 0;
if (bytesLeftToRead >= MINIMUM_HEADER_BYTES) {
int originalLength = bytesLeftToRead;
QByteArray originalDataBuffer((const char*)data, originalLength);
int clockSkew = args.sourceNode ? args.sourceNode->getClockSkewUsec() : 0;
const unsigned char* dataAt = data;
// id
QByteArray encodedID = originalDataBuffer.mid(bytesRead, NUM_BYTES_RFC4122_UUID); // maximum possible size
_id = QUuid::fromRfc4122(encodedID);
_creatorTokenID = UNKNOWN_ENTITY_TOKEN; // if we know the id, then we don't care about the creator token
_newlyCreated = false;
dataAt += encodedID.size();
bytesRead += encodedID.size();
// type
QByteArray encodedType = originalDataBuffer.mid(bytesRead); // maximum possible size
ByteCountCoded<quint32> typeCoder = encodedType;
encodedType = typeCoder; // determine true length
dataAt += encodedType.size();
bytesRead += encodedType.size();
quint32 type = typeCoder;
_type = (EntityTypes::EntityType)type;
bool overwriteLocalData = true; // assume the new content overwrites our local data
// _created
quint64 createdFromBuffer = 0;
memcpy(&createdFromBuffer, dataAt, sizeof(createdFromBuffer));
dataAt += sizeof(createdFromBuffer);
bytesRead += sizeof(createdFromBuffer);
quint64 now = usecTimestampNow();
if (_created == UNKNOWN_CREATED_TIME) {
// we don't yet have a _created timestamp, so we accept this one
createdFromBuffer -= clockSkew;
if (createdFromBuffer > now || createdFromBuffer == UNKNOWN_CREATED_TIME) {
createdFromBuffer = now;
}
_created = createdFromBuffer;
}
#ifdef WANT_DEBUG
quint64 lastEdited = getLastEdited();
float editedAgo = getEditedAgo();
QString agoAsString = formatSecondsElapsed(editedAgo);
QString ageAsString = formatSecondsElapsed(getAge());
qDebug() << "------------------------------------------";
qDebug() << "Loading entity " << getEntityItemID() << " from buffer...";
qDebug() << "------------------------------------------";
debugDump();
qDebug() << "------------------------------------------";
qDebug() << " _created =" << _created;
qDebug() << " age=" << getAge() << "seconds - " << ageAsString;
qDebug() << " lastEdited =" << lastEdited;
qDebug() << " ago=" << editedAgo << "seconds - " << agoAsString;
#endif
quint64 lastEditedFromBuffer = 0;
quint64 lastEditedFromBufferAdjusted = 0;
// TODO: we could make this encoded as a delta from _created
// _lastEdited
memcpy(&lastEditedFromBuffer, dataAt, sizeof(lastEditedFromBuffer));
dataAt += sizeof(lastEditedFromBuffer);
bytesRead += sizeof(lastEditedFromBuffer);
lastEditedFromBufferAdjusted = lastEditedFromBuffer - clockSkew;
if (lastEditedFromBufferAdjusted > now) {
lastEditedFromBufferAdjusted = now;
}
bool fromSameServerEdit = (lastEditedFromBuffer == _lastEditedFromRemoteInRemoteTime);
#ifdef WANT_DEBUG
qDebug() << "data from server **************** ";
qDebug() << " entityItemID:" << getEntityItemID();
qDebug() << " now:" << now;
qDebug() << " getLastEdited:" << debugTime(getLastEdited(), now);
qDebug() << " lastEditedFromBuffer:" << debugTime(lastEditedFromBuffer, now);
qDebug() << " clockSkew:" << debugTimeOnly(clockSkew);
qDebug() << " lastEditedFromBufferAdjusted:" << debugTime(lastEditedFromBufferAdjusted, now);
qDebug() << " _lastEditedFromRemote:" << debugTime(_lastEditedFromRemote, now);
qDebug() << " _lastEditedFromRemoteInRemoteTime:" << debugTime(_lastEditedFromRemoteInRemoteTime, now);
qDebug() << " fromSameServerEdit:" << fromSameServerEdit;
#endif
bool ignoreServerPacket = false; // assume we'll use this server packet
// If this packet is from the same server edit as the last packet we accepted from the server
// we probably want to use it.
if (fromSameServerEdit) {
// If this is from the same sever packet, then check against any local changes since we got
// the most recent packet from this server time
if (_lastEdited > _lastEditedFromRemote) {
ignoreServerPacket = true;
}
} else {
// If this isn't from the same sever packet, then honor our skew adjusted times...
// If we've changed our local tree more recently than the new data from this packet
// then we will not be changing our values, instead we just read and skip the data
if (_lastEdited > lastEditedFromBufferAdjusted) {
ignoreServerPacket = true;
}
}
if (ignoreServerPacket) {
overwriteLocalData = false;
#ifdef WANT_DEBUG
qDebug() << "IGNORING old data from server!!! ****************";
debugDump();
#endif
} else {
#ifdef WANT_DEBUG
qDebug() << "USING NEW data from server!!! ****************";
debugDump();
#endif
// don't allow _lastEdited to be in the future
_lastEdited = lastEditedFromBufferAdjusted;
_lastEditedFromRemote = now;
_lastEditedFromRemoteInRemoteTime = lastEditedFromBuffer;
// TODO: only send this notification if something ACTUALLY changed (hint, we haven't yet parsed
// the properties out of the bitstream (see below))
somethingChangedNotification(); // notify derived classes that something has changed
}
// last updated is stored as ByteCountCoded delta from lastEdited
QByteArray encodedUpdateDelta = originalDataBuffer.mid(bytesRead); // maximum possible size
ByteCountCoded<quint64> updateDeltaCoder = encodedUpdateDelta;
quint64 updateDelta = updateDeltaCoder;
if (overwriteLocalData) {
_lastUpdated = lastEditedFromBufferAdjusted + updateDelta; // don't adjust for clock skew since we already did that
#ifdef WANT_DEBUG
qDebug() << " _lastUpdated:" << debugTime(_lastUpdated, now);
qDebug() << " _lastEdited:" << debugTime(_lastEdited, now);
qDebug() << " lastEditedFromBufferAdjusted:" << debugTime(lastEditedFromBufferAdjusted, now);
#endif
}
encodedUpdateDelta = updateDeltaCoder; // determine true length
dataAt += encodedUpdateDelta.size();
bytesRead += encodedUpdateDelta.size();
// Newer bitstreams will have a last simulated and a last updated value
if (args.bitstreamVersion >= VERSION_ENTITIES_HAS_LAST_SIMULATED_TIME) {
// last simulated is stored as ByteCountCoded delta from lastEdited
QByteArray encodedSimulatedDelta = originalDataBuffer.mid(bytesRead); // maximum possible size
ByteCountCoded<quint64> simulatedDeltaCoder = encodedSimulatedDelta;
quint64 simulatedDelta = simulatedDeltaCoder;
if (overwriteLocalData) {
_lastSimulated = lastEditedFromBufferAdjusted + simulatedDelta; // don't adjust for clock skew since we already did that
#ifdef WANT_DEBUG
qDebug() << " _lastSimulated:" << debugTime(_lastSimulated, now);
qDebug() << " _lastEdited:" << debugTime(_lastEdited, now);
qDebug() << " lastEditedFromBufferAdjusted:" << debugTime(lastEditedFromBufferAdjusted, now);
#endif
}
encodedSimulatedDelta = simulatedDeltaCoder; // determine true length
dataAt += encodedSimulatedDelta.size();
bytesRead += encodedSimulatedDelta.size();
}
#ifdef WANT_DEBUG
if (overwriteLocalData) {
qDebug() << "EntityItem::readEntityDataFromBuffer()... changed entity:" << getEntityItemID();
qDebug() << " getLastEdited:" << debugTime(getLastEdited(), now);
qDebug() << " getLastSimulated:" << debugTime(getLastSimulated(), now);
qDebug() << " getLastUpdated:" << debugTime(getLastUpdated(), now);
}
#endif
// Property Flags
QByteArray encodedPropertyFlags = originalDataBuffer.mid(bytesRead); // maximum possible size
EntityPropertyFlags propertyFlags = encodedPropertyFlags;
dataAt += propertyFlags.getEncodedLength();
bytesRead += propertyFlags.getEncodedLength();
bool useMeters = (args.bitstreamVersion >= VERSION_ENTITIES_USE_METERS_AND_RADIANS);
if (useMeters) {
READ_ENTITY_PROPERTY_SETTER(PROP_POSITION, glm::vec3, updatePosition);
} else {
READ_ENTITY_PROPERTY_SETTER(PROP_POSITION, glm::vec3, updatePositionInDomainUnits);
}
// Old bitstreams had PROP_RADIUS, new bitstreams have PROP_DIMENSIONS
if (args.bitstreamVersion < VERSION_ENTITIES_SUPPORT_DIMENSIONS) {
if (propertyFlags.getHasProperty(PROP_RADIUS)) {
float fromBuffer;
memcpy(&fromBuffer, dataAt, sizeof(fromBuffer));
dataAt += sizeof(fromBuffer);
bytesRead += sizeof(fromBuffer);
if (overwriteLocalData) {
setRadius(fromBuffer);
}
}
} else {
if (useMeters) {
READ_ENTITY_PROPERTY_SETTER(PROP_DIMENSIONS, glm::vec3, setDimensions);
} else {
READ_ENTITY_PROPERTY_SETTER(PROP_DIMENSIONS, glm::vec3, setDimensionsInDomainUnits);
}
}
READ_ENTITY_PROPERTY_QUAT_SETTER(PROP_ROTATION, updateRotation);
READ_ENTITY_PROPERTY_SETTER(PROP_DENSITY, float, updateDensity);
if (useMeters) {
READ_ENTITY_PROPERTY_SETTER(PROP_VELOCITY, glm::vec3, updateVelocity);
READ_ENTITY_PROPERTY_SETTER(PROP_GRAVITY, glm::vec3, updateGravity);
} else {
READ_ENTITY_PROPERTY_SETTER(PROP_VELOCITY, glm::vec3, updateVelocityInDomainUnits);
READ_ENTITY_PROPERTY_SETTER(PROP_GRAVITY, glm::vec3, updateGravityInDomainUnits);
}
READ_ENTITY_PROPERTY(PROP_DAMPING, float, _damping);
READ_ENTITY_PROPERTY_SETTER(PROP_LIFETIME, float, updateLifetime);
READ_ENTITY_PROPERTY_STRING(PROP_SCRIPT, setScript);
READ_ENTITY_PROPERTY(PROP_REGISTRATION_POINT, glm::vec3, _registrationPoint);
if (useMeters) {
READ_ENTITY_PROPERTY_SETTER(PROP_ANGULAR_VELOCITY, glm::vec3, updateAngularVelocity);
} else {
READ_ENTITY_PROPERTY_SETTER(PROP_ANGULAR_VELOCITY, glm::vec3, updateAngularVelocityInDegrees);
}
READ_ENTITY_PROPERTY(PROP_ANGULAR_DAMPING, float, _angularDamping);
READ_ENTITY_PROPERTY(PROP_VISIBLE, bool, _visible);
READ_ENTITY_PROPERTY_SETTER(PROP_IGNORE_FOR_COLLISIONS, bool, updateIgnoreForCollisions);
READ_ENTITY_PROPERTY_SETTER(PROP_COLLISIONS_WILL_MOVE, bool, updateCollisionsWillMove);
READ_ENTITY_PROPERTY(PROP_LOCKED, bool, _locked);
READ_ENTITY_PROPERTY_STRING(PROP_USER_DATA, setUserData);
bytesRead += readEntitySubclassDataFromBuffer(dataAt, (bytesLeftToRead - bytesRead), args, propertyFlags, overwriteLocalData);
READ_ENTITY_PROPERTY_STRING(PROP_ATTRIBUTION, setAttribution);
if (overwriteLocalData && (getDirtyFlags() & (EntityItem::DIRTY_POSITION | EntityItem::DIRTY_VELOCITY))) {
// NOTE: This code is attempting to "repair" the old data we just got from the server to make it more
// closely match where the entities should be if they'd stepped forward in time to "now". The server
// is sending us data with a known "last simulated" time. That time is likely in the past, and therefore
// this "new" data is actually slightly out of date. We calculate the time we need to skip forward and
// use our simulation helper routine to get a best estimate of where the entity should be.
const float MIN_TIME_SKIP = 0.0f;
const float MAX_TIME_SKIP = 1.0f; // in seconds
float skipTimeForward = glm::clamp((float)(now - _lastSimulated) / (float)(USECS_PER_SECOND),
MIN_TIME_SKIP, MAX_TIME_SKIP);
if (skipTimeForward > 0.0f) {
#ifdef WANT_DEBUG
qDebug() << "skipTimeForward:" << skipTimeForward;
#endif
simulateKinematicMotion(skipTimeForward);
}
_lastSimulated = now;
}
}
return bytesRead;
}
void EntityItem::debugDump() const {
qDebug() << "EntityItem id:" << getEntityItemID();
qDebug(" edited ago:%f", getEditedAgo());
qDebug(" position:%f,%f,%f", _position.x, _position.y, _position.z);
qDebug() << " dimensions:" << _dimensions;
}
// adjust any internal timestamps to fix clock skew for this server
void EntityItem::adjustEditPacketForClockSkew(unsigned char* editPacketBuffer, size_t length, int clockSkew) {
unsigned char* dataAt = editPacketBuffer;
int octets = numberOfThreeBitSectionsInCode(dataAt);
int lengthOfOctcode = bytesRequiredForCodeLength(octets);
dataAt += lengthOfOctcode;
// lastEdited
quint64 lastEditedInLocalTime;
memcpy(&lastEditedInLocalTime, dataAt, sizeof(lastEditedInLocalTime));
quint64 lastEditedInServerTime = lastEditedInLocalTime + clockSkew;
memcpy(dataAt, &lastEditedInServerTime, sizeof(lastEditedInServerTime));
#ifdef WANT_DEBUG
qDebug("EntityItem::adjustEditPacketForClockSkew()...");
qDebug() << " lastEditedInLocalTime: " << lastEditedInLocalTime;
qDebug() << " clockSkew: " << clockSkew;
qDebug() << " lastEditedInServerTime: " << lastEditedInServerTime;
#endif
}
float EntityItem::computeMass() const {
return _density * _volumeMultiplier * _dimensions.x * _dimensions.y * _dimensions.z;
}
void EntityItem::setDensity(float density) {
_density = glm::max(glm::min(density, ENTITY_ITEM_MAX_DENSITY), ENTITY_ITEM_MIN_DENSITY);
}
void EntityItem::updateDensity(float density) {
const float MIN_DENSITY_CHANGE_FACTOR = 0.001f; // 0.1 percent
float newDensity = glm::max(glm::min(density, ENTITY_ITEM_MAX_DENSITY), ENTITY_ITEM_MIN_DENSITY);
if (fabsf(_density - newDensity) / _density > MIN_DENSITY_CHANGE_FACTOR) {
_density = newDensity;
_dirtyFlags |= EntityItem::DIRTY_MASS;
}
}
void EntityItem::setMass(float mass) {
// Setting the mass actually changes the _density (at fixed volume), however
// we must protect the density range to help maintain stability of physics simulation
// therefore this method might not accept the mass that is supplied.
float volume = _volumeMultiplier * _dimensions.x * _dimensions.y * _dimensions.z;
// compute new density
const float MIN_VOLUME = 1.0e-6f; // 0.001mm^3
if (volume < 1.0e-6f) {
// avoid divide by zero
_density = glm::min(mass / MIN_VOLUME, ENTITY_ITEM_MAX_DENSITY);
} else {
_density = glm::max(glm::min(mass / volume, ENTITY_ITEM_MAX_DENSITY), ENTITY_ITEM_MIN_DENSITY);
}
}
void EntityItem::simulate(const quint64& now) {
if (_lastSimulated == 0) {
_lastSimulated = now;
}
float timeElapsed = (float)(now - _lastSimulated) / (float)(USECS_PER_SECOND);
#ifdef WANT_DEBUG
qDebug() << "********** EntityItem::simulate()";
qDebug() << " entity ID=" << getEntityItemID();
qDebug() << " now=" << now;
qDebug() << " _lastSimulated=" << _lastSimulated;
qDebug() << " timeElapsed=" << timeElapsed;
qDebug() << " hasVelocity=" << hasVelocity();
qDebug() << " hasGravity=" << hasGravity();
qDebug() << " hasAngularVelocity=" << hasAngularVelocity();
qDebug() << " getAngularVelocity=" << getAngularVelocity();
qDebug() << " isMortal=" << isMortal();
qDebug() << " getAge()=" << getAge();
qDebug() << " getLifetime()=" << getLifetime();
if (hasVelocity() || hasGravity()) {
qDebug() << " MOVING...=";
qDebug() << " hasVelocity=" << hasVelocity();
qDebug() << " hasGravity=" << hasGravity();
qDebug() << " hasAngularVelocity=" << hasAngularVelocity();
qDebug() << " getAngularVelocity=" << getAngularVelocity();
}
if (hasAngularVelocity()) {
qDebug() << " CHANGING...=";
qDebug() << " hasAngularVelocity=" << hasAngularVelocity();
qDebug() << " getAngularVelocity=" << getAngularVelocity();
}
if (isMortal()) {
qDebug() << " MORTAL...=";
qDebug() << " isMortal=" << isMortal();
qDebug() << " getAge()=" << getAge();
qDebug() << " getLifetime()=" << getLifetime();
}
qDebug() << " ********** EntityItem::simulate() .... SETTING _lastSimulated=" << _lastSimulated;
#endif
simulateKinematicMotion(timeElapsed);
_lastSimulated = now;
}
void EntityItem::simulateKinematicMotion(float timeElapsed) {
if (hasAngularVelocity()) {
// angular damping
if (_angularDamping > 0.0f) {
_angularVelocity *= powf(1.0f - _angularDamping, timeElapsed);
#ifdef WANT_DEBUG
qDebug() << " angularDamping :" << _angularDamping;
qDebug() << " newAngularVelocity:" << _angularVelocity;
#endif
}
float angularSpeed = glm::length(_angularVelocity);
const float EPSILON_ANGULAR_VELOCITY_LENGTH = 0.0017453f; // 0.0017453 rad/sec = 0.1f degrees/sec
if (angularSpeed < EPSILON_ANGULAR_VELOCITY_LENGTH) {
if (angularSpeed > 0.0f) {
_dirtyFlags |= EntityItem::DIRTY_MOTION_TYPE;
}
_angularVelocity = ENTITY_ITEM_ZERO_VEC3;
} else {
// for improved agreement with the way Bullet integrates rotations we use an approximation
// and break the integration into bullet-sized substeps
glm::quat rotation = getRotation();
float dt = timeElapsed;
while (dt > PHYSICS_ENGINE_FIXED_SUBSTEP) {
glm::quat dQ = computeBulletRotationStep(_angularVelocity, PHYSICS_ENGINE_FIXED_SUBSTEP);
rotation = glm::normalize(dQ * rotation);
dt -= PHYSICS_ENGINE_FIXED_SUBSTEP;
}
// NOTE: this final partial substep can drift away from a real Bullet simulation however
// it only becomes significant for rapidly rotating objects
// (e.g. around PI/4 radians per substep, or 7.5 rotations/sec at 60 substeps/sec).
glm::quat dQ = computeBulletRotationStep(_angularVelocity, dt);
rotation = glm::normalize(dQ * rotation);
setRotation(rotation);
}
}
if (hasVelocity()) {
// linear damping
glm::vec3 velocity = getVelocity();
if (_damping > 0.0f) {
velocity *= powf(1.0f - _damping, timeElapsed);
#ifdef WANT_DEBUG
qDebug() << " damping:" << _damping;
qDebug() << " velocity AFTER dampingResistance:" << velocity;
qDebug() << " glm::length(velocity):" << glm::length(velocity);
qDebug() << " velocityEspilon :" << ENTITY_ITEM_EPSILON_VELOCITY_LENGTH;
#endif
}
// integrate position forward
glm::vec3 position = getPosition();
glm::vec3 newPosition = position + (velocity * timeElapsed);
#ifdef WANT_DEBUG
qDebug() << " EntityItem::simulate()....";
qDebug() << " timeElapsed:" << timeElapsed;
qDebug() << " old AACube:" << getMaximumAACube();
qDebug() << " old position:" << position;
qDebug() << " old velocity:" << velocity;
qDebug() << " old getAABox:" << getAABox();
qDebug() << " newPosition:" << newPosition;
qDebug() << " glm::distance(newPosition, position):" << glm::distance(newPosition, position);
#endif
position = newPosition;
// apply gravity
if (hasGravity()) {
// handle resting on surface case, this is definitely a bit of a hack, and it only works on the
// "ground" plane of the domain, but for now it's what we've got
velocity += getGravity() * timeElapsed;
}
float speed = glm::length(velocity);
const float EPSILON_LINEAR_VELOCITY_LENGTH = 0.001f; // 1mm/sec
if (speed < EPSILON_LINEAR_VELOCITY_LENGTH) {
setVelocity(ENTITY_ITEM_ZERO_VEC3);
if (speed > 0.0f) {
_dirtyFlags |= EntityItem::DIRTY_MOTION_TYPE;
}
} else {
setPosition(position);
setVelocity(velocity);
}
#ifdef WANT_DEBUG
qDebug() << " new position:" << position;
qDebug() << " new velocity:" << velocity;
qDebug() << " new AACube:" << getMaximumAACube();
qDebug() << " old getAABox:" << getAABox();
#endif
}
}
bool EntityItem::isMoving() const {
return hasVelocity() || hasAngularVelocity();
}
bool EntityItem::lifetimeHasExpired() const {
return isMortal() && (getAge() > getLifetime());
}
quint64 EntityItem::getExpiry() const {
return _created + (quint64)(_lifetime * (float)USECS_PER_SECOND);
}
EntityItemProperties EntityItem::getProperties() const {
EntityItemProperties properties;
properties._id = getID();
properties._idSet = true;
properties._created = _created;
properties._type = getType();
COPY_ENTITY_PROPERTY_TO_PROPERTIES(position, getPosition);
COPY_ENTITY_PROPERTY_TO_PROPERTIES(dimensions, getDimensions); // NOTE: radius is obsolete
COPY_ENTITY_PROPERTY_TO_PROPERTIES(rotation, getRotation);
COPY_ENTITY_PROPERTY_TO_PROPERTIES(density, getDensity);
COPY_ENTITY_PROPERTY_TO_PROPERTIES(velocity, getVelocity);
COPY_ENTITY_PROPERTY_TO_PROPERTIES(gravity, getGravity);
COPY_ENTITY_PROPERTY_TO_PROPERTIES(damping, getDamping);
COPY_ENTITY_PROPERTY_TO_PROPERTIES(lifetime, getLifetime);
COPY_ENTITY_PROPERTY_TO_PROPERTIES(script, getScript);
COPY_ENTITY_PROPERTY_TO_PROPERTIES(registrationPoint, getRegistrationPoint);
COPY_ENTITY_PROPERTY_TO_PROPERTIES(angularVelocity, getAngularVelocity);
COPY_ENTITY_PROPERTY_TO_PROPERTIES(angularDamping, getAngularDamping);
COPY_ENTITY_PROPERTY_TO_PROPERTIES(glowLevel, getGlowLevel);
COPY_ENTITY_PROPERTY_TO_PROPERTIES(localRenderAlpha, getLocalRenderAlpha);
COPY_ENTITY_PROPERTY_TO_PROPERTIES(visible, getVisible);
COPY_ENTITY_PROPERTY_TO_PROPERTIES(ignoreForCollisions, getIgnoreForCollisions);
COPY_ENTITY_PROPERTY_TO_PROPERTIES(collisionsWillMove, getCollisionsWillMove);
COPY_ENTITY_PROPERTY_TO_PROPERTIES(locked, getLocked);
COPY_ENTITY_PROPERTY_TO_PROPERTIES(userData, getUserData);
COPY_ENTITY_PROPERTY_TO_PROPERTIES(attribution, getAttribution);
properties._defaultSettings = false;
return properties;
}
bool EntityItem::setProperties(const EntityItemProperties& properties) {
bool somethingChanged = false;
SET_ENTITY_PROPERTY_FROM_PROPERTIES(position, updatePosition); // this will call recalculate collision shape if needed
SET_ENTITY_PROPERTY_FROM_PROPERTIES(dimensions, updateDimensions); // NOTE: radius is obsolete
SET_ENTITY_PROPERTY_FROM_PROPERTIES(rotation, updateRotation);
SET_ENTITY_PROPERTY_FROM_PROPERTIES(density, updateDensity);
SET_ENTITY_PROPERTY_FROM_PROPERTIES(velocity, updateVelocity);
SET_ENTITY_PROPERTY_FROM_PROPERTIES(gravity, updateGravity);
SET_ENTITY_PROPERTY_FROM_PROPERTIES(damping, updateDamping);
SET_ENTITY_PROPERTY_FROM_PROPERTIES(lifetime, updateLifetime);
SET_ENTITY_PROPERTY_FROM_PROPERTIES(script, setScript);
SET_ENTITY_PROPERTY_FROM_PROPERTIES(registrationPoint, setRegistrationPoint);
SET_ENTITY_PROPERTY_FROM_PROPERTIES(angularVelocity, updateAngularVelocity);
SET_ENTITY_PROPERTY_FROM_PROPERTIES(angularDamping, updateAngularDamping);
SET_ENTITY_PROPERTY_FROM_PROPERTIES(glowLevel, setGlowLevel);
SET_ENTITY_PROPERTY_FROM_PROPERTIES(localRenderAlpha, setLocalRenderAlpha);
SET_ENTITY_PROPERTY_FROM_PROPERTIES(visible, setVisible);
SET_ENTITY_PROPERTY_FROM_PROPERTIES(ignoreForCollisions, updateIgnoreForCollisions);
SET_ENTITY_PROPERTY_FROM_PROPERTIES(collisionsWillMove, updateCollisionsWillMove);
SET_ENTITY_PROPERTY_FROM_PROPERTIES(locked, setLocked);
SET_ENTITY_PROPERTY_FROM_PROPERTIES(userData, setUserData);
SET_ENTITY_PROPERTY_FROM_PROPERTIES(attribution, setAttribution);
if (somethingChanged) {
somethingChangedNotification(); // notify derived classes that something has changed
uint64_t now = usecTimestampNow();
#ifdef WANT_DEBUG
int elapsed = now - getLastEdited();
qDebug() << "EntityItem::setProperties() AFTER update... edited AGO=" << elapsed <<
"now=" << now << " getLastEdited()=" << getLastEdited();
#endif
if (_created != UNKNOWN_CREATED_TIME) {
setLastEdited(now);
}
if (getDirtyFlags() & (EntityItem::DIRTY_POSITION | EntityItem::DIRTY_VELOCITY)) {
// TODO: Andrew & Brad to discuss. Is this correct? Maybe it is. Need to think through all cases.
_lastSimulated = now;
}
}
// timestamps
quint64 timestamp = properties.getCreated();
if (_created == UNKNOWN_CREATED_TIME && timestamp != UNKNOWN_CREATED_TIME) {
quint64 now = usecTimestampNow();
if (timestamp > now) {
timestamp = now;
}
_created = timestamp;
timestamp = properties.getLastEdited();
if (timestamp > now) {
timestamp = now;
} else if (timestamp < _created) {
timestamp = _created;
}
_lastEdited = timestamp;
}
return somethingChanged;
}
void EntityItem::recordCreationTime() {
assert(_created == UNKNOWN_CREATED_TIME);
_created = usecTimestampNow();
_lastEdited = _created;
_lastUpdated = _created;
_lastSimulated = _created;
}
// TODO: doesn't this need to handle rotation?
glm::vec3 EntityItem::getCenter() const {
return _position + (_dimensions * (glm::vec3(0.5f,0.5f,0.5f) - _registrationPoint));
}
/// The maximum bounding cube for the entity, independent of it's rotation.
/// This accounts for the registration point (upon which rotation occurs around).
///
AACube EntityItem::getMaximumAACube() const {
// * we know that the position is the center of rotation
glm::vec3 centerOfRotation = _position; // also where _registration point is
// * we know that the registration point is the center of rotation
// * we can calculate the length of the furthest extent from the registration point
// as the dimensions * max (registrationPoint, (1.0,1.0,1.0) - registrationPoint)
glm::vec3 registrationPoint = (_dimensions * _registrationPoint);
glm::vec3 registrationRemainder = (_dimensions * (glm::vec3(1.0f, 1.0f, 1.0f) - _registrationPoint));
glm::vec3 furthestExtentFromRegistration = glm::max(registrationPoint, registrationRemainder);
// * we know that if you rotate in any direction you would create a sphere
// that has a radius of the length of furthest extent from registration point
float radius = glm::length(furthestExtentFromRegistration);
// * we know that the minimum bounding cube of this maximum possible sphere is
// (center - radius) to (center + radius)
glm::vec3 minimumCorner = centerOfRotation - glm::vec3(radius, radius, radius);
AACube boundingCube(minimumCorner, radius * 2.0f);
return boundingCube;
}
/// The minimum bounding cube for the entity accounting for it's rotation.
/// This accounts for the registration point (upon which rotation occurs around).
///
AACube EntityItem::getMinimumAACube() const {
// _position represents the position of the registration point.
glm::vec3 registrationRemainder = glm::vec3(1.0f, 1.0f, 1.0f) - _registrationPoint;
glm::vec3 unrotatedMinRelativeToEntity = - (_dimensions * _registrationPoint);
glm::vec3 unrotatedMaxRelativeToEntity = _dimensions * registrationRemainder;
Extents unrotatedExtentsRelativeToRegistrationPoint = { unrotatedMinRelativeToEntity, unrotatedMaxRelativeToEntity };
Extents rotatedExtentsRelativeToRegistrationPoint = unrotatedExtentsRelativeToRegistrationPoint.getRotated(getRotation());
// shift the extents to be relative to the position/registration point
rotatedExtentsRelativeToRegistrationPoint.shiftBy(_position);
// the cube that best encompasses extents is...
AABox box(rotatedExtentsRelativeToRegistrationPoint);
glm::vec3 centerOfBox = box.calcCenter();
float longestSide = box.getLargestDimension();
float halfLongestSide = longestSide / 2.0f;
glm::vec3 cornerOfCube = centerOfBox - glm::vec3(halfLongestSide, halfLongestSide, halfLongestSide);
// old implementation... not correct!!!
return AACube(cornerOfCube, longestSide);
}
AABox EntityItem::getAABox() const {
// _position represents the position of the registration point.
glm::vec3 registrationRemainder = glm::vec3(1.0f, 1.0f, 1.0f) - _registrationPoint;
glm::vec3 unrotatedMinRelativeToEntity = - (_dimensions * _registrationPoint);
glm::vec3 unrotatedMaxRelativeToEntity = _dimensions * registrationRemainder;
Extents unrotatedExtentsRelativeToRegistrationPoint = { unrotatedMinRelativeToEntity, unrotatedMaxRelativeToEntity };
Extents rotatedExtentsRelativeToRegistrationPoint = unrotatedExtentsRelativeToRegistrationPoint.getRotated(getRotation());
// shift the extents to be relative to the position/registration point
rotatedExtentsRelativeToRegistrationPoint.shiftBy(_position);
return AABox(rotatedExtentsRelativeToRegistrationPoint);
}
AABox EntityItem::getAABoxInDomainUnits() const {
AABox box = getAABox();
box.scale(1.0f / (float)TREE_SCALE);
return box;
}
// NOTE: This should only be used in cases of old bitstreams which only contain radius data
// 0,0,0 --> maxDimension,maxDimension,maxDimension
// ... has a corner to corner distance of glm::length(maxDimension,maxDimension,maxDimension)
// ... radius = cornerToCornerLength / 2.0f
// ... radius * 2.0f = cornerToCornerLength
// ... cornerToCornerLength = sqrt(3 x maxDimension ^ 2)
// ... cornerToCornerLength = sqrt(3 x maxDimension ^ 2)
// ... radius * 2.0f = sqrt(3 x maxDimension ^ 2)
// ... (radius * 2.0f) ^2 = 3 x maxDimension ^ 2
// ... ((radius * 2.0f) ^2) / 3 = maxDimension ^ 2
// ... sqrt(((radius * 2.0f) ^2) / 3) = maxDimension
// ... sqrt((diameter ^2) / 3) = maxDimension
//
void EntityItem::setRadius(float value) {
float diameter = value * 2.0f;
float maxDimension = sqrt((diameter * diameter) / 3.0f);
_dimensions = glm::vec3(maxDimension, maxDimension, maxDimension);
}
// TODO: get rid of all users of this function...
// ... radius = cornerToCornerLength / 2.0f
// ... cornerToCornerLength = sqrt(3 x maxDimension ^ 2)
// ... radius = sqrt(3 x maxDimension ^ 2) / 2.0f;
float EntityItem::getRadius() const {
return 0.5f * glm::length(_dimensions);
}
void EntityItem::computeShapeInfo(ShapeInfo& info) {
info.setParams(getShapeType(), 0.5f * getDimensions());
}
const float MIN_POSITION_DELTA = 0.0001f;
const float MIN_DIMENSIONS_DELTA = 0.0005f;
const float MIN_ALIGNMENT_DOT = 0.999999f;
const float MIN_VELOCITY_DELTA = 0.01f;
const float MIN_DAMPING_DELTA = 0.001f;
const float MIN_GRAVITY_DELTA = 0.001f;
const float MIN_SPIN_DELTA = 0.0003f;
void EntityItem::updatePositionInDomainUnits(const glm::vec3& value) {
glm::vec3 position = value * (float)TREE_SCALE;
updatePosition(position);
}
void EntityItem::updatePosition(const glm::vec3& value) {
if (glm::distance(_position, value) > MIN_POSITION_DELTA) {
_position = value;
_dirtyFlags |= EntityItem::DIRTY_POSITION;
}
}
void EntityItem::updateDimensionsInDomainUnits(const glm::vec3& value) {
glm::vec3 dimensions = value * (float)TREE_SCALE;
updateDimensions(dimensions);
}
void EntityItem::updateDimensions(const glm::vec3& value) {
if (glm::distance(_dimensions, value) > MIN_DIMENSIONS_DELTA) {
_dimensions = value;
_dirtyFlags |= (EntityItem::DIRTY_SHAPE | EntityItem::DIRTY_MASS);
}
}
void EntityItem::updateRotation(const glm::quat& rotation) {
if (glm::dot(_rotation, rotation) < MIN_ALIGNMENT_DOT) {
_rotation = rotation;
_dirtyFlags |= EntityItem::DIRTY_POSITION;
}
}
void EntityItem::updateMass(float mass) {
// Setting the mass actually changes the _density (at fixed volume), however
// we must protect the density range to help maintain stability of physics simulation
// therefore this method might not accept the mass that is supplied.
float volume = _volumeMultiplier * _dimensions.x * _dimensions.y * _dimensions.z;
// compute new density
float newDensity = _density;
const float MIN_VOLUME = 1.0e-6f; // 0.001mm^3
if (volume < 1.0e-6f) {
// avoid divide by zero
newDensity = glm::min(mass / MIN_VOLUME, ENTITY_ITEM_MAX_DENSITY);
} else {
newDensity = glm::max(glm::min(mass / volume, ENTITY_ITEM_MAX_DENSITY), ENTITY_ITEM_MIN_DENSITY);
}
const float MIN_DENSITY_CHANGE_FACTOR = 0.001f; // 0.1 percent
if (fabsf(_density - newDensity) / _density > MIN_DENSITY_CHANGE_FACTOR) {
_density = newDensity;
_dirtyFlags |= EntityItem::DIRTY_MASS;
}
}
void EntityItem::updateVelocityInDomainUnits(const glm::vec3& value) {
glm::vec3 velocity = value * (float)TREE_SCALE;
updateVelocity(velocity);
}
void EntityItem::updateVelocity(const glm::vec3& value) {
if (glm::distance(_velocity, value) > MIN_VELOCITY_DELTA) {
if (glm::length(value) < MIN_VELOCITY_DELTA) {
_velocity = ENTITY_ITEM_ZERO_VEC3;
} else {
_velocity = value;
}
_dirtyFlags |= EntityItem::DIRTY_VELOCITY;
}
}
void EntityItem::updateDamping(float value) {
if (fabsf(_damping - value) > MIN_DAMPING_DELTA) {
_damping = glm::clamp(value, 0.0f, 1.0f);
_dirtyFlags |= EntityItem::DIRTY_VELOCITY;
}
}
void EntityItem::updateGravityInDomainUnits(const glm::vec3& value) {
glm::vec3 gravity = value * (float) TREE_SCALE;
updateGravity(gravity);
}
void EntityItem::updateGravity(const glm::vec3& value) {
if ( glm::distance(_gravity, value) > MIN_GRAVITY_DELTA) {
_gravity = value;
_dirtyFlags |= EntityItem::DIRTY_VELOCITY;
}
}
void EntityItem::updateAngularVelocity(const glm::vec3& value) {
if (glm::distance(_angularVelocity, value) > MIN_SPIN_DELTA) {
_angularVelocity = value;
_dirtyFlags |= EntityItem::DIRTY_VELOCITY;
}
}
void EntityItem::updateAngularDamping(float value) {
if (fabsf(_angularDamping - value) > MIN_DAMPING_DELTA) {
_angularDamping = glm::clamp(value, 0.0f, 1.0f);
_dirtyFlags |= EntityItem::DIRTY_VELOCITY;
}
}
void EntityItem::updateIgnoreForCollisions(bool value) {
if (_ignoreForCollisions != value) {
_ignoreForCollisions = value;
_dirtyFlags |= EntityItem::DIRTY_COLLISION_GROUP;
}
}
void EntityItem::updateCollisionsWillMove(bool value) {
if (_collisionsWillMove != value) {
_collisionsWillMove = value;
_dirtyFlags |= EntityItem::DIRTY_MOTION_TYPE;
}
}
void EntityItem::updateLifetime(float value) {
if (_lifetime != value) {
_lifetime = value;
_dirtyFlags |= EntityItem::DIRTY_LIFETIME;
}
}