mirror of
https://github.com/overte-org/overte.git
synced 2025-08-05 23:39:26 +02:00
524 lines
20 KiB
C++
524 lines
20 KiB
C++
//
|
|
// AudioMixerSlave.cpp
|
|
// assignment-client/src/audio
|
|
//
|
|
// Created by Zach Pomerantz on 11/22/16.
|
|
// Copyright 2016 High Fidelity, Inc.
|
|
//
|
|
// Distributed under the Apache License, Version 2.0.
|
|
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
|
|
//
|
|
|
|
#include <glm/glm.hpp>
|
|
#include <glm/gtx/norm.hpp>
|
|
#include <glm/gtx/vector_angle.hpp>
|
|
|
|
#include <LogHandler.h>
|
|
#include <NetworkAccessManager.h>
|
|
#include <NodeList.h>
|
|
#include <Node.h>
|
|
#include <OctreeConstants.h>
|
|
#include <plugins/PluginManager.h>
|
|
#include <plugins/CodecPlugin.h>
|
|
#include <udt/PacketHeaders.h>
|
|
#include <SharedUtil.h>
|
|
#include <StDev.h>
|
|
#include <UUID.h>
|
|
|
|
#include "AudioRingBuffer.h"
|
|
#include "AudioMixer.h"
|
|
#include "AudioMixerClientData.h"
|
|
#include "AvatarAudioStream.h"
|
|
#include "InjectedAudioStream.h"
|
|
|
|
#include "AudioMixerSlave.h"
|
|
|
|
void AudioMixerSlave::mix(const SharedNodePointer& node, unsigned int frame) {
|
|
AudioMixerClientData* data = (AudioMixerClientData*)node->getLinkedData();
|
|
if (data == nullptr) {
|
|
return;
|
|
}
|
|
|
|
auto avatarStream = data->getAvatarAudioStream();
|
|
if (avatarStream == nullptr) {
|
|
return;
|
|
}
|
|
|
|
auto nodeList = DependencyManager::get<NodeList>();
|
|
|
|
// mute the avatar, if necessary
|
|
if (AudioMixer::shouldMute(avatarStream->getQuietestFrameLoudness()) || data->shouldMuteClient()) {
|
|
auto mutePacket = NLPacket::create(PacketType::NoisyMute, 0);
|
|
nodeList->sendPacket(std::move(mutePacket), *node);
|
|
|
|
// probably now we just reset the flag, once should do it (?)
|
|
data->setShouldMuteClient(false);
|
|
}
|
|
|
|
// generate and send audio packets
|
|
if (node->getType() == NodeType::Agent && node->getActiveSocket()) {
|
|
|
|
// mix streams
|
|
bool mixHasAudio = prepareMix(node);
|
|
|
|
// write the packet
|
|
std::unique_ptr<NLPacket> mixPacket;
|
|
if (mixHasAudio || data->shouldFlushEncoder()) {
|
|
// encode the audio
|
|
QByteArray encodedBuffer;
|
|
if (mixHasAudio) {
|
|
QByteArray decodedBuffer(reinterpret_cast<char*>(_clampedSamples), AudioConstants::NETWORK_FRAME_BYTES_STEREO);
|
|
data->encode(decodedBuffer, encodedBuffer);
|
|
} else {
|
|
// time to flush, which resets the shouldFlush until next time we encode something
|
|
data->encodeFrameOfZeros(encodedBuffer);
|
|
}
|
|
|
|
// write it to a packet
|
|
writeMixPacket(mixPacket, data, encodedBuffer);
|
|
} else {
|
|
writeSilentPacket(mixPacket, data);
|
|
}
|
|
|
|
// send audio environment packet
|
|
sendEnvironmentPacket(node);
|
|
|
|
// send mixed audio packet
|
|
nodeList->sendPacket(std::move(mixPacket), *node);
|
|
data->incrementOutgoingMixedAudioSequenceNumber();
|
|
|
|
// send an audio stream stats packet to the client approximately every second
|
|
static const unsigned int NUM_FRAMES_PER_SEC = (int) ceil(AudioConstants::NETWORK_FRAMES_PER_SEC);
|
|
if (data->shouldSendStats(frame % NUM_FRAMES_PER_SEC)) {
|
|
data->sendAudioStreamStatsPackets(node);
|
|
}
|
|
|
|
++stats.sumListeners;
|
|
}
|
|
}
|
|
|
|
void AudioMixerSlave::writeMixPacket(std::unique_ptr<NLPacket>& mixPacket, AudioMixerClientData* data, QByteArray& buffer) {
|
|
int mixPacketBytes = sizeof(quint16) + AudioConstants::MAX_CODEC_NAME_LENGTH_ON_WIRE
|
|
+ AudioConstants::NETWORK_FRAME_BYTES_STEREO;
|
|
mixPacket = NLPacket::create(PacketType::MixedAudio, mixPacketBytes);
|
|
|
|
// pack sequence number
|
|
quint16 sequence = data->getOutgoingSequenceNumber();
|
|
mixPacket->writePrimitive(sequence);
|
|
|
|
// write the codec
|
|
QString codecInPacket = data->getCodecName();
|
|
mixPacket->writeString(codecInPacket);
|
|
|
|
// pack mixed audio samples
|
|
mixPacket->write(buffer.constData(), buffer.size());
|
|
}
|
|
|
|
void AudioMixerSlave::writeSilentPacket(std::unique_ptr<NLPacket>& mixPacket, AudioMixerClientData* data) {
|
|
int silentPacketBytes = sizeof(quint16) + sizeof(quint16) + AudioConstants::MAX_CODEC_NAME_LENGTH_ON_WIRE;
|
|
mixPacket = NLPacket::create(PacketType::SilentAudioFrame, silentPacketBytes);
|
|
|
|
// pack sequence number
|
|
quint16 sequence = data->getOutgoingSequenceNumber();
|
|
mixPacket->writePrimitive(sequence);
|
|
|
|
// write the codec
|
|
QString codecInPacket = data->getCodecName();
|
|
mixPacket->writeString(codecInPacket);
|
|
|
|
// pack number of silent audio samples
|
|
quint16 numSilentSamples = AudioConstants::NETWORK_FRAME_SAMPLES_STEREO;
|
|
mixPacket->writePrimitive(numSilentSamples);
|
|
}
|
|
|
|
void AudioMixerSlave::sendEnvironmentPacket(const SharedNodePointer& node) {
|
|
// Send stream properties
|
|
bool hasReverb = false;
|
|
float reverbTime, wetLevel;
|
|
|
|
auto& reverbSettings = AudioMixer::getReverbSettings();
|
|
auto& audioZones = AudioMixer::getAudioZones();
|
|
|
|
// find reverb properties
|
|
for (int i = 0; i < reverbSettings.size(); ++i) {
|
|
AudioMixerClientData* data = static_cast<AudioMixerClientData*>(node->getLinkedData());
|
|
glm::vec3 streamPosition = data->getAvatarAudioStream()->getPosition();
|
|
AABox box = audioZones[reverbSettings[i].zone];
|
|
if (box.contains(streamPosition)) {
|
|
hasReverb = true;
|
|
reverbTime = reverbSettings[i].reverbTime;
|
|
wetLevel = reverbSettings[i].wetLevel;
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
AudioMixerClientData* nodeData = static_cast<AudioMixerClientData*>(node->getLinkedData());
|
|
AvatarAudioStream* stream = nodeData->getAvatarAudioStream();
|
|
bool dataChanged = (stream->hasReverb() != hasReverb) ||
|
|
(stream->hasReverb() && (stream->getRevebTime() != reverbTime ||
|
|
stream->getWetLevel() != wetLevel));
|
|
if (dataChanged) {
|
|
// Update stream
|
|
if (hasReverb) {
|
|
stream->setReverb(reverbTime, wetLevel);
|
|
} else {
|
|
stream->clearReverb();
|
|
}
|
|
}
|
|
|
|
// Send at change or every so often
|
|
float CHANCE_OF_SEND = 0.01f;
|
|
bool sendData = dataChanged || (randFloat() < CHANCE_OF_SEND);
|
|
|
|
if (sendData) {
|
|
auto nodeList = DependencyManager::get<NodeList>();
|
|
|
|
unsigned char bitset = 0;
|
|
|
|
int packetSize = sizeof(bitset);
|
|
|
|
if (hasReverb) {
|
|
packetSize += sizeof(reverbTime) + sizeof(wetLevel);
|
|
}
|
|
|
|
auto envPacket = NLPacket::create(PacketType::AudioEnvironment, packetSize);
|
|
|
|
if (hasReverb) {
|
|
setAtBit(bitset, HAS_REVERB_BIT);
|
|
}
|
|
|
|
envPacket->writePrimitive(bitset);
|
|
|
|
if (hasReverb) {
|
|
envPacket->writePrimitive(reverbTime);
|
|
envPacket->writePrimitive(wetLevel);
|
|
}
|
|
nodeList->sendPacket(std::move(envPacket), *node);
|
|
}
|
|
}
|
|
|
|
bool AudioMixerSlave::prepareMix(const SharedNodePointer& node) {
|
|
AvatarAudioStream* nodeAudioStream = static_cast<AudioMixerClientData*>(node->getLinkedData())->getAvatarAudioStream();
|
|
AudioMixerClientData* nodeData = static_cast<AudioMixerClientData*>(node->getLinkedData());
|
|
|
|
// zero out the client mix for this node
|
|
memset(_mixedSamples, 0, sizeof(_mixedSamples));
|
|
|
|
// loop through all other nodes that have sufficient audio to mix
|
|
DependencyManager::get<NodeList>()->eachNode([&](const SharedNodePointer& otherNode){
|
|
// make sure that we have audio data for this other node
|
|
// and that it isn't being ignored by our listening node
|
|
// and that it isn't ignoring our listening node
|
|
if (otherNode->getLinkedData()
|
|
&& !node->isIgnoringNodeWithID(otherNode->getUUID()) && !otherNode->isIgnoringNodeWithID(node->getUUID())) {
|
|
AudioMixerClientData* otherData = static_cast<AudioMixerClientData*>(otherNode->getLinkedData());
|
|
|
|
// check if distance is inside ignore radius
|
|
if (node->isIgnoreRadiusEnabled() || otherNode->isIgnoreRadiusEnabled()) {
|
|
float ignoreRadius = glm::min(node->getIgnoreRadius(), otherNode->getIgnoreRadius());
|
|
if (glm::distance(nodeData->getPosition(), otherData->getPosition()) < ignoreRadius) {
|
|
// skip, distance is inside ignore radius
|
|
return;
|
|
}
|
|
}
|
|
|
|
// enumerate the ARBs attached to the otherNode and add all that should be added to mix
|
|
auto streamsCopy = otherData->getAudioStreams();
|
|
for (auto& streamPair : streamsCopy) {
|
|
auto otherNodeStream = streamPair.second;
|
|
if (*otherNode != *node || otherNodeStream->shouldLoopbackForNode()) {
|
|
addStreamToMix(*nodeData, otherNode->getUUID(), *nodeAudioStream, *otherNodeStream);
|
|
}
|
|
}
|
|
}
|
|
});
|
|
|
|
// use the per listner AudioLimiter to render the mixed data...
|
|
nodeData->audioLimiter.render(_mixedSamples, _clampedSamples, AudioConstants::NETWORK_FRAME_SAMPLES_PER_CHANNEL);
|
|
|
|
// check for silent audio after the peak limitor has converted the samples
|
|
bool hasAudio = false;
|
|
for (int i = 0; i < AudioConstants::NETWORK_FRAME_SAMPLES_STEREO; ++i) {
|
|
if (_clampedSamples[i] != 0) {
|
|
hasAudio = true;
|
|
break;
|
|
}
|
|
}
|
|
return hasAudio;
|
|
}
|
|
|
|
void AudioMixerSlave::addStreamToMix(AudioMixerClientData& listenerNodeData, const QUuid& sourceNodeID,
|
|
const AvatarAudioStream& listeningNodeStream, const PositionalAudioStream& streamToAdd) {
|
|
// to reduce artifacts we calculate the gain and azimuth for every source for this listener
|
|
// even if we are not going to end up mixing in this source
|
|
|
|
++stats.totalMixes;
|
|
|
|
// this ensures that the tail of any previously mixed audio or the first block of new audio sounds correct
|
|
|
|
// check if this is a server echo of a source back to itself
|
|
bool isEcho = (&streamToAdd == &listeningNodeStream);
|
|
|
|
glm::vec3 relativePosition = streamToAdd.getPosition() - listeningNodeStream.getPosition();
|
|
|
|
// figure out the distance between source and listener
|
|
float distance = glm::max(glm::length(relativePosition), EPSILON);
|
|
|
|
// figure out the gain for this source at the listener
|
|
float gain = gainForSource(listeningNodeStream, streamToAdd, relativePosition, isEcho);
|
|
|
|
// figure out the azimuth to this source at the listener
|
|
float azimuth = isEcho ? 0.0f : azimuthForSource(listeningNodeStream, listeningNodeStream, relativePosition);
|
|
|
|
float repeatedFrameFadeFactor = 1.0f;
|
|
|
|
static const int HRTF_DATASET_INDEX = 1;
|
|
|
|
if (!streamToAdd.lastPopSucceeded()) {
|
|
bool forceSilentBlock = true;
|
|
|
|
if (!streamToAdd.getLastPopOutput().isNull()) {
|
|
bool isInjector = dynamic_cast<const InjectedAudioStream*>(&streamToAdd);
|
|
|
|
// in an injector, just go silent - the injector has likely ended
|
|
// in other inputs (microphone, &c.), repeat with fade to avoid the harsh jump to silence
|
|
|
|
// we'll repeat the last block until it has a block to mix
|
|
// and we'll gradually fade that repeated block into silence.
|
|
|
|
// calculate its fade factor, which depends on how many times it's already been repeated.
|
|
repeatedFrameFadeFactor = calculateRepeatedFrameFadeFactor(streamToAdd.getConsecutiveNotMixedCount() - 1);
|
|
if (!isInjector && repeatedFrameFadeFactor > 0.0f) {
|
|
// apply the repeatedFrameFadeFactor to the gain
|
|
gain *= repeatedFrameFadeFactor;
|
|
|
|
forceSilentBlock = false;
|
|
}
|
|
}
|
|
|
|
if (forceSilentBlock) {
|
|
// we're deciding not to repeat either since we've already done it enough times or repetition with fade is disabled
|
|
// in this case we will call renderSilent with a forced silent block
|
|
// this ensures the correct tail from the previously mixed block and the correct spatialization of first block
|
|
// of any upcoming audio
|
|
|
|
if (!streamToAdd.isStereo() && !isEcho) {
|
|
// get the existing listener-source HRTF object, or create a new one
|
|
auto& hrtf = listenerNodeData.hrtfForStream(sourceNodeID, streamToAdd.getStreamIdentifier());
|
|
|
|
// this is not done for stereo streams since they do not go through the HRTF
|
|
static int16_t silentMonoBlock[AudioConstants::NETWORK_FRAME_SAMPLES_PER_CHANNEL] = {};
|
|
hrtf.renderSilent(silentMonoBlock, _mixedSamples, HRTF_DATASET_INDEX, azimuth, distance, gain,
|
|
AudioConstants::NETWORK_FRAME_SAMPLES_PER_CHANNEL);
|
|
|
|
++stats.hrtfSilentRenders;
|
|
}
|
|
|
|
return;
|
|
}
|
|
}
|
|
|
|
// grab the stream from the ring buffer
|
|
AudioRingBuffer::ConstIterator streamPopOutput = streamToAdd.getLastPopOutput();
|
|
|
|
if (streamToAdd.isStereo() || isEcho) {
|
|
// this is a stereo source or server echo so we do not pass it through the HRTF
|
|
// simply apply our calculated gain to each sample
|
|
if (streamToAdd.isStereo()) {
|
|
for (int i = 0; i < AudioConstants::NETWORK_FRAME_SAMPLES_STEREO; ++i) {
|
|
_mixedSamples[i] += float(streamPopOutput[i] * gain / AudioConstants::MAX_SAMPLE_VALUE);
|
|
}
|
|
|
|
++stats.manualStereoMixes;
|
|
} else {
|
|
for (int i = 0; i < AudioConstants::NETWORK_FRAME_SAMPLES_STEREO; i += 2) {
|
|
auto monoSample = float(streamPopOutput[i / 2] * gain / AudioConstants::MAX_SAMPLE_VALUE);
|
|
_mixedSamples[i] += monoSample;
|
|
_mixedSamples[i + 1] += monoSample;
|
|
}
|
|
|
|
++stats.manualEchoMixes;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
// get the existing listener-source HRTF object, or create a new one
|
|
auto& hrtf = listenerNodeData.hrtfForStream(sourceNodeID, streamToAdd.getStreamIdentifier());
|
|
|
|
static int16_t streamBlock[AudioConstants::NETWORK_FRAME_SAMPLES_PER_CHANNEL];
|
|
|
|
streamPopOutput.readSamples(streamBlock, AudioConstants::NETWORK_FRAME_SAMPLES_PER_CHANNEL);
|
|
|
|
// if the frame we're about to mix is silent, simply call render silent and move on
|
|
if (streamToAdd.getLastPopOutputLoudness() == 0.0f) {
|
|
// silent frame from source
|
|
|
|
// we still need to call renderSilent via the HRTF for mono source
|
|
hrtf.renderSilent(streamBlock, _mixedSamples, HRTF_DATASET_INDEX, azimuth, distance, gain,
|
|
AudioConstants::NETWORK_FRAME_SAMPLES_PER_CHANNEL);
|
|
|
|
++stats.hrtfSilentRenders;
|
|
|
|
return;
|
|
}
|
|
|
|
float audibilityThreshold = AudioMixer::getMinimumAudibilityThreshold();
|
|
if (audibilityThreshold > 0.0f &&
|
|
streamToAdd.getLastPopOutputTrailingLoudness() / glm::length(relativePosition) <= audibilityThreshold) {
|
|
// the mixer is struggling so we're going to drop off some streams
|
|
|
|
// we call renderSilent via the HRTF with the actual frame data and a gain of 0.0
|
|
hrtf.renderSilent(streamBlock, _mixedSamples, HRTF_DATASET_INDEX, azimuth, distance, 0.0f,
|
|
AudioConstants::NETWORK_FRAME_SAMPLES_PER_CHANNEL);
|
|
|
|
++stats.hrtfStruggleRenders;
|
|
|
|
return;
|
|
}
|
|
|
|
++stats.hrtfRenders;
|
|
|
|
// mono stream, call the HRTF with our block and calculated azimuth and gain
|
|
hrtf.render(streamBlock, _mixedSamples, HRTF_DATASET_INDEX, azimuth, distance, gain,
|
|
AudioConstants::NETWORK_FRAME_SAMPLES_PER_CHANNEL);
|
|
}
|
|
|
|
const int IEEE754_MANT_BITS = 23;
|
|
const int IEEE754_EXPN_BIAS = 127;
|
|
|
|
//
|
|
// for x > 0.0f, returns log2(x)
|
|
// for x <= 0.0f, returns large negative value
|
|
//
|
|
// abs |error| < 8e-3, smooth (exact for x=2^N) for NPOLY=3
|
|
// abs |error| < 2e-4, smooth (exact for x=2^N) for NPOLY=5
|
|
// rel |error| < 0.4 from precision loss very close to 1.0f
|
|
//
|
|
static inline float fastlog2(float x) {
|
|
|
|
union { float f; int32_t i; } mant, bits = { x };
|
|
|
|
// split into mantissa and exponent
|
|
mant.i = (bits.i & ((1 << IEEE754_MANT_BITS) - 1)) | (IEEE754_EXPN_BIAS << IEEE754_MANT_BITS);
|
|
int32_t expn = (bits.i >> IEEE754_MANT_BITS) - IEEE754_EXPN_BIAS;
|
|
|
|
mant.f -= 1.0f;
|
|
|
|
// polynomial for log2(1+x) over x=[0,1]
|
|
//x = (-0.346555386f * mant.f + 1.346555386f) * mant.f;
|
|
x = (((-0.0821307180f * mant.f + 0.321188984f) * mant.f - 0.677784014f) * mant.f + 1.43872575f) * mant.f;
|
|
|
|
return x + expn;
|
|
}
|
|
|
|
//
|
|
// for -126 <= x < 128, returns exp2(x)
|
|
//
|
|
// rel |error| < 3e-3, smooth (exact for x=N) for NPOLY=3
|
|
// rel |error| < 9e-6, smooth (exact for x=N) for NPOLY=5
|
|
//
|
|
static inline float fastexp2(float x) {
|
|
|
|
union { float f; int32_t i; } xi;
|
|
|
|
// bias such that x > 0
|
|
x += IEEE754_EXPN_BIAS;
|
|
//x = MAX(x, 1.0f);
|
|
//x = MIN(x, 254.9999f);
|
|
|
|
// split into integer and fraction
|
|
xi.i = (int32_t)x;
|
|
x -= xi.i;
|
|
|
|
// construct exp2(xi) as a float
|
|
xi.i <<= IEEE754_MANT_BITS;
|
|
|
|
// polynomial for exp2(x) over x=[0,1]
|
|
//x = (0.339766028f * x + 0.660233972f) * x + 1.0f;
|
|
x = (((0.0135557472f * x + 0.0520323690f) * x + 0.241379763f) * x + 0.693032121f) * x + 1.0f;
|
|
|
|
return x * xi.f;
|
|
}
|
|
|
|
float AudioMixerSlave::gainForSource(const AvatarAudioStream& listeningNodeStream, const PositionalAudioStream& streamToAdd,
|
|
const glm::vec3& relativePosition, bool isEcho) {
|
|
float gain = 1.0f;
|
|
|
|
float distanceBetween = glm::length(relativePosition);
|
|
|
|
if (distanceBetween < EPSILON) {
|
|
distanceBetween = EPSILON;
|
|
}
|
|
|
|
if (streamToAdd.getType() == PositionalAudioStream::Injector) {
|
|
gain *= reinterpret_cast<const InjectedAudioStream*>(&streamToAdd)->getAttenuationRatio();
|
|
}
|
|
|
|
if (!isEcho && (streamToAdd.getType() == PositionalAudioStream::Microphone)) {
|
|
// source is another avatar, apply fixed off-axis attenuation to make them quieter as they turn away from listener
|
|
glm::vec3 rotatedListenerPosition = glm::inverse(streamToAdd.getOrientation()) * relativePosition;
|
|
|
|
float angleOfDelivery = glm::angle(glm::vec3(0.0f, 0.0f, -1.0f),
|
|
glm::normalize(rotatedListenerPosition));
|
|
|
|
const float MAX_OFF_AXIS_ATTENUATION = 0.2f;
|
|
const float OFF_AXIS_ATTENUATION_FORMULA_STEP = (1 - MAX_OFF_AXIS_ATTENUATION) / 2.0f;
|
|
|
|
float offAxisCoefficient = MAX_OFF_AXIS_ATTENUATION +
|
|
(OFF_AXIS_ATTENUATION_FORMULA_STEP * (angleOfDelivery / PI_OVER_TWO));
|
|
|
|
// multiply the current attenuation coefficient by the calculated off axis coefficient
|
|
gain *= offAxisCoefficient;
|
|
}
|
|
|
|
float attenuationPerDoublingInDistance = AudioMixer::getAttenuationPerDoublingInDistance();
|
|
auto& zoneSettings = AudioMixer::getZoneSettings();
|
|
auto& audioZones = AudioMixer::getAudioZones();
|
|
for (int i = 0; i < zoneSettings.length(); ++i) {
|
|
if (audioZones[zoneSettings[i].source].contains(streamToAdd.getPosition()) &&
|
|
audioZones[zoneSettings[i].listener].contains(listeningNodeStream.getPosition())) {
|
|
attenuationPerDoublingInDistance = zoneSettings[i].coefficient;
|
|
break;
|
|
}
|
|
}
|
|
|
|
const float ATTENUATION_BEGINS_AT_DISTANCE = 1.0f;
|
|
if (distanceBetween >= ATTENUATION_BEGINS_AT_DISTANCE) {
|
|
|
|
// translate the zone setting to gain per log2(distance)
|
|
float g = 1.0f - attenuationPerDoublingInDistance;
|
|
g = (g < EPSILON) ? EPSILON : g;
|
|
g = (g > 1.0f) ? 1.0f : g;
|
|
|
|
// calculate the distance coefficient using the distance to this node
|
|
float distanceCoefficient = fastexp2(fastlog2(g) * fastlog2(distanceBetween/ATTENUATION_BEGINS_AT_DISTANCE));
|
|
|
|
// multiply the current attenuation coefficient by the distance coefficient
|
|
gain *= distanceCoefficient;
|
|
}
|
|
|
|
return gain;
|
|
}
|
|
|
|
float AudioMixerSlave::azimuthForSource(const AvatarAudioStream& listeningNodeStream, const PositionalAudioStream& streamToAdd,
|
|
const glm::vec3& relativePosition) {
|
|
glm::quat inverseOrientation = glm::inverse(listeningNodeStream.getOrientation());
|
|
|
|
// Compute sample delay for the two ears to create phase panning
|
|
glm::vec3 rotatedSourcePosition = inverseOrientation * relativePosition;
|
|
|
|
// project the rotated source position vector onto the XZ plane
|
|
rotatedSourcePosition.y = 0.0f;
|
|
|
|
static const float SOURCE_DISTANCE_THRESHOLD = 1e-30f;
|
|
|
|
if (glm::length2(rotatedSourcePosition) > SOURCE_DISTANCE_THRESHOLD) {
|
|
// produce an oriented angle about the y-axis
|
|
return glm::orientedAngle(glm::vec3(0.0f, 0.0f, -1.0f), glm::normalize(rotatedSourcePosition), glm::vec3(0.0f, -1.0f, 0.0f));
|
|
} else {
|
|
// there is no distance between listener and source - return no azimuth
|
|
return 0;
|
|
}
|
|
}
|