mirror of
https://github.com/overte-org/overte.git
synced 2025-07-13 11:39:03 +02:00
- Introduced concept of sometimes only updating the new/changed part of the VBO while other times updating the full VBO. This allows us to get the speed advantage of only partial VBO updates when nodes haven't been removed - Some debugging output related to _alwaysRenderFullVBO - added cleanupRemovedVoxels() which actually deletes the nodes that were previously removed (fixes a memory leak!!)
713 lines
29 KiB
C++
713 lines
29 KiB
C++
//
|
|
// Cube.cpp
|
|
// interface
|
|
//
|
|
// Created by Philip on 12/31/12.
|
|
// Copyright (c) 2012 High Fidelity, Inc. All rights reserved.
|
|
//
|
|
#ifdef _WIN32
|
|
#define _timeval_
|
|
#define _USE_MATH_DEFINES
|
|
#endif
|
|
#include <cstring>
|
|
#include <cmath>
|
|
#include <iostream> // to load voxels from file
|
|
#include <fstream> // to load voxels from file
|
|
#include <SharedUtil.h>
|
|
#include <PacketHeaders.h>
|
|
#include <PerfStat.h>
|
|
#include <OctalCode.h>
|
|
#include <pthread.h>
|
|
#include "Log.h"
|
|
#include "VoxelConstants.h"
|
|
|
|
#include "VoxelSystem.h"
|
|
|
|
float identityVertices[] = { 0,0,0, 1,0,0, 1,1,0, 0,1,0, 0,0,1, 1,0,1, 1,1,1, 0,1,1,
|
|
0,0,0, 1,0,0, 1,1,0, 0,1,0, 0,0,1, 1,0,1, 1,1,1, 0,1,1,
|
|
0,0,0, 1,0,0, 1,1,0, 0,1,0, 0,0,1, 1,0,1, 1,1,1, 0,1,1 };
|
|
|
|
GLfloat identityNormals[] = { 0,0,-1, 0,0,-1, 0,0,-1, 0,0,-1,
|
|
0,0,+1, 0,0,+1, 0,0,+1, 0,0,+1,
|
|
0,-1,0, 0,-1,0, 0,+1,0, 0,+1,0,
|
|
0,-1,0, 0,-1,0, 0,+1,0, 0,+1,0,
|
|
-1,0,0, +1,0,0, +1,0,0, -1,0,0,
|
|
-1,0,0, +1,0,0, +1,0,0, -1,0,0 };
|
|
|
|
GLubyte identityIndices[] = { 0,2,1, 0,3,2, // Z- .
|
|
8,9,13, 8,13,12, // Y-
|
|
16,23,19, 16,20,23, // X-
|
|
17,18,22, 17,22,21, // X+
|
|
10,11,15, 10,15,14, // Y+
|
|
4,5,6, 4,6,7 }; // Z+ .
|
|
|
|
VoxelSystem::VoxelSystem() {
|
|
_voxelsInReadArrays = _voxelsInWriteArrays = _voxelsUpdated = 0;
|
|
_alwaysRenderFullVBO = true;
|
|
_tree = new VoxelTree();
|
|
pthread_mutex_init(&_bufferWriteLock, NULL);
|
|
}
|
|
|
|
VoxelSystem::~VoxelSystem() {
|
|
delete[] _readVerticesArray;
|
|
delete[] _writeVerticesArray;
|
|
delete[] _readColorsArray;
|
|
delete[] _writeColorsArray;
|
|
delete[] _voxelDirtyArray;
|
|
delete _tree;
|
|
pthread_mutex_destroy(&_bufferWriteLock);
|
|
}
|
|
|
|
void VoxelSystem::loadVoxelsFile(const char* fileName, bool wantColorRandomizer) {
|
|
_tree->loadVoxelsFile(fileName, wantColorRandomizer);
|
|
setupNewVoxelsForDrawing();
|
|
}
|
|
|
|
long int VoxelSystem::getVoxelsCreated() {
|
|
return _tree->voxelsCreated;
|
|
}
|
|
|
|
float VoxelSystem::getVoxelsCreatedPerSecondAverage() {
|
|
return (1 / _tree->voxelsCreatedStats.getEventDeltaAverage());
|
|
}
|
|
|
|
long int VoxelSystem::getVoxelsColored() {
|
|
return _tree->voxelsColored;
|
|
}
|
|
|
|
float VoxelSystem::getVoxelsColoredPerSecondAverage() {
|
|
return (1 / _tree->voxelsColoredStats.getEventDeltaAverage());
|
|
}
|
|
|
|
long int VoxelSystem::getVoxelsBytesRead() {
|
|
return _tree->voxelsBytesRead;
|
|
}
|
|
|
|
float VoxelSystem::getVoxelsBytesReadPerSecondAverage() {
|
|
return _tree->voxelsBytesReadStats.getAverageSampleValuePerSecond();
|
|
}
|
|
|
|
int VoxelSystem::parseData(unsigned char* sourceBuffer, int numBytes) {
|
|
|
|
unsigned char command = *sourceBuffer;
|
|
unsigned char *voxelData = sourceBuffer + 1;
|
|
|
|
switch(command) {
|
|
case PACKET_HEADER_VOXEL_DATA:
|
|
{
|
|
PerformanceWarning warn(_renderWarningsOn, "readBitstreamToTree()");
|
|
// ask the VoxelTree to read the bitstream into the tree
|
|
_tree->readBitstreamToTree(voxelData, numBytes - 1);
|
|
}
|
|
break;
|
|
case PACKET_HEADER_ERASE_VOXEL:
|
|
// ask the tree to read the "remove" bitstream
|
|
_tree->processRemoveVoxelBitstream(sourceBuffer, numBytes);
|
|
break;
|
|
case PACKET_HEADER_Z_COMMAND:
|
|
|
|
// the Z command is a special command that allows the sender to send high level semantic
|
|
// requests, like erase all, or add sphere scene, different receivers may handle these
|
|
// messages differently
|
|
char* packetData = (char *)sourceBuffer;
|
|
char* command = &packetData[1]; // start of the command
|
|
int commandLength = strlen(command); // commands are null terminated strings
|
|
int totalLength = 1+commandLength+1;
|
|
|
|
printLog("got Z message len(%d)= %s\n", numBytes, command);
|
|
|
|
while (totalLength <= numBytes) {
|
|
if (0==strcmp(command,(char*)"erase all")) {
|
|
printLog("got Z message == erase all\n");
|
|
_tree->eraseAllVoxels();
|
|
_voxelsInReadArrays = _voxelsInWriteArrays = 0; // better way to do this??
|
|
}
|
|
if (0==strcmp(command,(char*)"add scene")) {
|
|
printLog("got Z message == add scene - NOT SUPPORTED ON INTERFACE\n");
|
|
}
|
|
totalLength += commandLength+1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
setupNewVoxelsForDrawing();
|
|
return numBytes;
|
|
}
|
|
|
|
void VoxelSystem::setupNewVoxelsForDrawing() {
|
|
PerformanceWarning warn(_renderWarningsOn, "setupNewVoxelsForDrawing()"); // would like to include _voxelsInArrays, _voxelsUpdated
|
|
double start = usecTimestampNow();
|
|
double sinceLastTime = (start - _setupNewVoxelsForDrawingLastFinished) / 1000.0;
|
|
|
|
if (sinceLastTime <= std::max(_setupNewVoxelsForDrawingLastElapsed, SIXTY_FPS_IN_MILLISECONDS)) {
|
|
return; // bail early, it hasn't been long enough since the last time we ran
|
|
}
|
|
|
|
double sinceLastViewCulling = (start - _lastViewCulling) / 1000.0;
|
|
// If the view frustum has changed, since last time, then remove nodes that are out of view
|
|
if ((sinceLastViewCulling >= std::max(_lastViewCullingElapsed, VIEW_CULLING_RATE_IN_MILLISECONDS)) && hasViewChanged()) {
|
|
_lastViewCulling = start;
|
|
|
|
// When we call removeOutOfView() voxels, we don't actually remove the voxels from the VBOs, but we do remove
|
|
// them from tree, this makes our tree caclulations faster, but doesn't require us to fully rebuild the VBOs (which
|
|
// can be expensive).
|
|
removeOutOfView();
|
|
|
|
// Once we call cleanupRemovedVoxels() we do need to rebuild our VBOs (if anything was actually removed). So,
|
|
// we should consider putting this someplace else... as this might be able to occur less frequently, and save us on
|
|
// VBO reubuilding. Possibly we should do this only if our actual VBO usage crosses some lower boundary.
|
|
cleanupRemovedVoxels();
|
|
|
|
double endViewCulling = usecTimestampNow();
|
|
_lastViewCullingElapsed = (endViewCulling - start) / 1000.0;
|
|
}
|
|
|
|
if (_tree->isDirty()) {
|
|
static char buffer[64] = { 0 };
|
|
if (_renderWarningsOn) {
|
|
sprintf(buffer, "newTreeToArrays() _alwaysRenderFullVBO=%s", (_alwaysRenderFullVBO ? "yes" : "no"));
|
|
};
|
|
PerformanceWarning warn(_renderWarningsOn, buffer);
|
|
_callsToTreesToArrays++;
|
|
if (_alwaysRenderFullVBO) {
|
|
_voxelsInWriteArrays = 0; // reset our VBO
|
|
}
|
|
_voxelsUpdated = newTreeToArrays(_tree->rootNode);
|
|
_tree->clearDirtyBit(); // after we pull the trees into the array, we can consider the tree clean
|
|
|
|
// since we called treeToArrays, we can assume that our VBO is in sync, and so partial updates to the VBOs are
|
|
// ok again, until/unless we call removeOutOfView()
|
|
_alwaysRenderFullVBO = false;
|
|
} else {
|
|
_voxelsUpdated = 0;
|
|
}
|
|
if (_voxelsUpdated) {
|
|
_voxelsDirty=true;
|
|
}
|
|
|
|
// copy the newly written data to the arrays designated for reading, only does something if _voxelsDirty && _voxelsUpdated
|
|
copyWrittenDataToReadArrays();
|
|
|
|
double end = usecTimestampNow();
|
|
double elapsedmsec = (end - start) / 1000.0;
|
|
_setupNewVoxelsForDrawingLastFinished = end;
|
|
_setupNewVoxelsForDrawingLastElapsed = elapsedmsec;
|
|
}
|
|
|
|
void VoxelSystem::cleanupRemovedVoxels() {
|
|
PerformanceWarning warn(_renderWarningsOn, "cleanupRemovedVoxels()");
|
|
if (!_removedVoxels.isEmpty()) {
|
|
while (!_removedVoxels.isEmpty()) {
|
|
delete _removedVoxels.extract();
|
|
}
|
|
_alwaysRenderFullVBO = true; // if we remove voxels, we must update our full VBOs
|
|
}
|
|
}
|
|
|
|
void VoxelSystem::copyWrittenDataToReadArrays() {
|
|
PerformanceWarning warn(_renderWarningsOn, "copyWrittenDataToReadArrays()"); // would like to include _voxelsInArrays, _voxelsUpdated
|
|
if (_voxelsDirty && _voxelsUpdated) {
|
|
// lock on the buffer write lock so we can't modify the data when the GPU is reading it
|
|
pthread_mutex_lock(&_bufferWriteLock);
|
|
int bytesOfVertices = (_voxelsInWriteArrays * VERTEX_POINTS_PER_VOXEL) * sizeof(GLfloat);
|
|
int bytesOfColors = (_voxelsInWriteArrays * VERTEX_POINTS_PER_VOXEL) * sizeof(GLubyte);
|
|
memcpy(_readVerticesArray, _writeVerticesArray, bytesOfVertices);
|
|
memcpy(_readColorsArray, _writeColorsArray, bytesOfColors );
|
|
_voxelsInReadArrays = _voxelsInWriteArrays;
|
|
pthread_mutex_unlock(&_bufferWriteLock);
|
|
}
|
|
}
|
|
|
|
int VoxelSystem::newTreeToArrays(VoxelNode* node) {
|
|
assert(_viewFrustum); // you must set up _viewFrustum before calling this
|
|
int voxelsUpdated = 0;
|
|
bool shouldRender = false; // assume we don't need to render it
|
|
// if it's colored, we might need to render it!
|
|
if (node->isColored()) {
|
|
float distanceToNode = node->distanceToCamera(*_viewFrustum);
|
|
float boundary = boundaryDistanceForRenderLevel(node->getLevel());
|
|
float childBoundary = boundaryDistanceForRenderLevel(node->getLevel() + 1);
|
|
bool inBoundary = (distanceToNode <= boundary);
|
|
bool inChildBoundary = (distanceToNode <= childBoundary);
|
|
shouldRender = (node->isLeaf() && inChildBoundary) || (inBoundary && !inChildBoundary);
|
|
}
|
|
node->setShouldRender(shouldRender);
|
|
// let children figure out their renderness
|
|
for (int i = 0; i < NUMBER_OF_CHILDREN; i++) {
|
|
if (node->getChildAtIndex(i)) {
|
|
voxelsUpdated += newTreeToArrays(node->getChildAtIndex(i));
|
|
}
|
|
}
|
|
if (_alwaysRenderFullVBO) {
|
|
voxelsUpdated += newway__updateNodeInArray(node);
|
|
} else {
|
|
voxelsUpdated += oldway__updateNodeInArray(node);
|
|
}
|
|
node->clearDirtyBit(); // always clear the dirty bit, even if it doesn't need to be rendered
|
|
return voxelsUpdated;
|
|
}
|
|
|
|
int VoxelSystem::newway__updateNodeInArray(VoxelNode* node) {
|
|
// If we've run out of room, then just bail...
|
|
if (_voxelsInWriteArrays >= MAX_VOXELS_PER_SYSTEM) {
|
|
return 0;
|
|
}
|
|
|
|
if (node->getShouldRender()) {
|
|
glm::vec3 startVertex = node->getCorner();
|
|
float voxelScale = node->getScale();
|
|
glBufferIndex nodeIndex = _voxelsInWriteArrays;
|
|
|
|
// populate the array with points for the 8 vertices
|
|
// and RGB color for each added vertex
|
|
for (int j = 0; j < VERTEX_POINTS_PER_VOXEL; j++ ) {
|
|
GLfloat* writeVerticesAt = _writeVerticesArray + (nodeIndex * VERTEX_POINTS_PER_VOXEL);
|
|
GLubyte* writeColorsAt = _writeColorsArray + (nodeIndex * VERTEX_POINTS_PER_VOXEL);
|
|
*(writeVerticesAt+j) = startVertex[j % 3] + (identityVertices[j] * voxelScale);
|
|
*(writeColorsAt +j) = node->getColor()[j % 3];
|
|
}
|
|
_voxelsInWriteArrays++; // our know vertices in the arrays
|
|
return 1; // rendered
|
|
}
|
|
return 0; // not-rendered
|
|
}
|
|
|
|
int VoxelSystem::oldway__updateNodeInArray(VoxelNode* node) {
|
|
// Now, if we've changed any attributes (our renderness, our color, etc) then update the Arrays... for us
|
|
if (node->isDirty() && (node->getShouldRender() || node->isKnownBufferIndex())) {
|
|
glm::vec3 startVertex;
|
|
float voxelScale = 0;
|
|
|
|
// If we're should render, use our legit location and scale,
|
|
if (node->getShouldRender()) {
|
|
startVertex = node->getCorner();
|
|
voxelScale = node->getScale();
|
|
} else {
|
|
// if we shouldn't render then set out location to some infinitely distant location,
|
|
// and our scale as infinitely small
|
|
startVertex[0] = startVertex[1] = startVertex[2] = FLT_MAX;
|
|
voxelScale = 0;
|
|
}
|
|
|
|
// If this node has not yet been written to the array, then add it to the end of the array.
|
|
glBufferIndex nodeIndex;
|
|
if (node->isKnownBufferIndex()) {
|
|
nodeIndex = node->getBufferIndex();
|
|
} else {
|
|
nodeIndex = _voxelsInWriteArrays;
|
|
}
|
|
|
|
_voxelDirtyArray[nodeIndex] = true;
|
|
|
|
// populate the array with points for the 8 vertices
|
|
// and RGB color for each added vertex
|
|
for (int j = 0; j < VERTEX_POINTS_PER_VOXEL; j++ ) {
|
|
GLfloat* writeVerticesAt = _writeVerticesArray + (nodeIndex * VERTEX_POINTS_PER_VOXEL);
|
|
GLubyte* writeColorsAt = _writeColorsArray + (nodeIndex * VERTEX_POINTS_PER_VOXEL);
|
|
*(writeVerticesAt+j) = startVertex[j % 3] + (identityVertices[j] * voxelScale);
|
|
*(writeColorsAt +j) = node->getColor()[j % 3];
|
|
}
|
|
if (!node->isKnownBufferIndex()) {
|
|
node->setBufferIndex(nodeIndex);
|
|
_voxelsInWriteArrays++; // our know vertices in the arrays
|
|
}
|
|
return 1; // updated!
|
|
}
|
|
return 0; // not-updated
|
|
}
|
|
|
|
VoxelSystem* VoxelSystem::clone() const {
|
|
// this still needs to be implemented, will need to be used if VoxelSystem is attached to agent
|
|
return NULL;
|
|
}
|
|
|
|
void VoxelSystem::init() {
|
|
|
|
_renderWarningsOn = false;
|
|
_callsToTreesToArrays = 0;
|
|
_setupNewVoxelsForDrawingLastFinished = 0;
|
|
_setupNewVoxelsForDrawingLastElapsed = 0;
|
|
_lastViewCullingElapsed = _lastViewCulling = 0;
|
|
|
|
// When we change voxels representations in the arrays, we'll update this
|
|
_voxelsDirty = false;
|
|
_voxelsInWriteArrays = 0;
|
|
_voxelsInReadArrays = 0;
|
|
_unusedArraySpace = 0;
|
|
|
|
// we will track individual dirty sections with this array of bools
|
|
_voxelDirtyArray = new bool[MAX_VOXELS_PER_SYSTEM];
|
|
memset(_voxelDirtyArray, false, MAX_VOXELS_PER_SYSTEM * sizeof(bool));
|
|
|
|
// prep the data structures for incoming voxel data
|
|
_writeVerticesArray = new GLfloat[VERTEX_POINTS_PER_VOXEL * MAX_VOXELS_PER_SYSTEM];
|
|
_readVerticesArray = new GLfloat[VERTEX_POINTS_PER_VOXEL * MAX_VOXELS_PER_SYSTEM];
|
|
|
|
_writeColorsArray = new GLubyte[VERTEX_POINTS_PER_VOXEL * MAX_VOXELS_PER_SYSTEM];
|
|
_readColorsArray = new GLubyte[VERTEX_POINTS_PER_VOXEL * MAX_VOXELS_PER_SYSTEM];
|
|
|
|
GLuint* indicesArray = new GLuint[INDICES_PER_VOXEL * MAX_VOXELS_PER_SYSTEM];
|
|
|
|
// populate the indicesArray
|
|
// this will not change given new voxels, so we can set it all up now
|
|
for (int n = 0; n < MAX_VOXELS_PER_SYSTEM; n++) {
|
|
// fill the indices array
|
|
int voxelIndexOffset = n * INDICES_PER_VOXEL;
|
|
GLuint* currentIndicesPos = indicesArray + voxelIndexOffset;
|
|
int startIndex = (n * VERTICES_PER_VOXEL);
|
|
|
|
for (int i = 0; i < INDICES_PER_VOXEL; i++) {
|
|
// add indices for this side of the cube
|
|
currentIndicesPos[i] = startIndex + identityIndices[i];
|
|
}
|
|
}
|
|
|
|
GLfloat* normalsArray = new GLfloat[VERTEX_POINTS_PER_VOXEL * MAX_VOXELS_PER_SYSTEM];
|
|
GLfloat* normalsArrayEndPointer = normalsArray;
|
|
|
|
// populate the normalsArray
|
|
for (int n = 0; n < MAX_VOXELS_PER_SYSTEM; n++) {
|
|
for (int i = 0; i < VERTEX_POINTS_PER_VOXEL; i++) {
|
|
*(normalsArrayEndPointer++) = identityNormals[i];
|
|
}
|
|
}
|
|
|
|
// VBO for the verticesArray
|
|
glGenBuffers(1, &_vboVerticesID);
|
|
glBindBuffer(GL_ARRAY_BUFFER, _vboVerticesID);
|
|
glBufferData(GL_ARRAY_BUFFER, VERTEX_POINTS_PER_VOXEL * sizeof(GLfloat) * MAX_VOXELS_PER_SYSTEM, NULL, GL_DYNAMIC_DRAW);
|
|
|
|
// VBO for the normalsArray
|
|
glGenBuffers(1, &_vboNormalsID);
|
|
glBindBuffer(GL_ARRAY_BUFFER, _vboNormalsID);
|
|
glBufferData(GL_ARRAY_BUFFER,
|
|
VERTEX_POINTS_PER_VOXEL * sizeof(GLfloat) * MAX_VOXELS_PER_SYSTEM,
|
|
normalsArray, GL_STATIC_DRAW);
|
|
|
|
// VBO for colorsArray
|
|
glGenBuffers(1, &_vboColorsID);
|
|
glBindBuffer(GL_ARRAY_BUFFER, _vboColorsID);
|
|
glBufferData(GL_ARRAY_BUFFER, VERTEX_POINTS_PER_VOXEL * sizeof(GLubyte) * MAX_VOXELS_PER_SYSTEM, NULL, GL_DYNAMIC_DRAW);
|
|
|
|
// VBO for the indicesArray
|
|
glGenBuffers(1, &_vboIndicesID);
|
|
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _vboIndicesID);
|
|
glBufferData(GL_ELEMENT_ARRAY_BUFFER,
|
|
INDICES_PER_VOXEL * sizeof(GLuint) * MAX_VOXELS_PER_SYSTEM,
|
|
indicesArray, GL_STATIC_DRAW);
|
|
|
|
// delete the indices and normals arrays that are no longer needed
|
|
delete[] indicesArray;
|
|
delete[] normalsArray;
|
|
}
|
|
|
|
void VoxelSystem::updateVBOs() {
|
|
static char buffer[40] = { 0 };
|
|
if (_renderWarningsOn) {
|
|
sprintf(buffer, "updateVBOs() _alwaysRenderFullVBO=%s", (_alwaysRenderFullVBO ? "yes" : "no"));
|
|
};
|
|
PerformanceWarning warn(_renderWarningsOn, buffer); // would like to include _callsToTreesToArrays
|
|
if (_voxelsDirty) {
|
|
if (_alwaysRenderFullVBO) {
|
|
glBufferIndex segmentStart = 0;
|
|
glBufferIndex segmentEnd = _voxelsInWriteArrays;
|
|
|
|
int segmentLength = (segmentEnd - segmentStart) + 1;
|
|
GLintptr segmentStartAt = segmentStart * VERTEX_POINTS_PER_VOXEL * sizeof(GLfloat);
|
|
GLsizeiptr segmentSizeBytes = segmentLength * VERTEX_POINTS_PER_VOXEL * sizeof(GLfloat);
|
|
GLfloat* readVerticesFrom = _readVerticesArray + (segmentStart * VERTEX_POINTS_PER_VOXEL);
|
|
glBindBuffer(GL_ARRAY_BUFFER, _vboVerticesID);
|
|
glBufferSubData(GL_ARRAY_BUFFER, segmentStartAt, segmentSizeBytes, readVerticesFrom);
|
|
segmentStartAt = segmentStart * VERTEX_POINTS_PER_VOXEL * sizeof(GLubyte);
|
|
segmentSizeBytes = segmentLength * VERTEX_POINTS_PER_VOXEL * sizeof(GLubyte);
|
|
GLubyte* readColorsFrom = _readColorsArray + (segmentStart * VERTEX_POINTS_PER_VOXEL);
|
|
glBindBuffer(GL_ARRAY_BUFFER, _vboColorsID);
|
|
glBufferSubData(GL_ARRAY_BUFFER, segmentStartAt, segmentSizeBytes, readColorsFrom);
|
|
} else {
|
|
glBufferIndex segmentStart = 0;
|
|
glBufferIndex segmentEnd = 0;
|
|
bool inSegment = false;
|
|
for (glBufferIndex i = 0; i < _voxelsInWriteArrays; i++) {
|
|
if (!inSegment) {
|
|
if (_voxelDirtyArray[i]) {
|
|
segmentStart = i;
|
|
inSegment = true;
|
|
_voxelDirtyArray[i] = false; // consider us clean!
|
|
}
|
|
} else {
|
|
if (!_voxelDirtyArray[i] || (i == (_voxelsInWriteArrays - 1)) ) {
|
|
segmentEnd = i;
|
|
inSegment = false;
|
|
int segmentLength = (segmentEnd - segmentStart) + 1;
|
|
GLintptr segmentStartAt = segmentStart * VERTEX_POINTS_PER_VOXEL * sizeof(GLfloat);
|
|
GLsizeiptr segmentSizeBytes = segmentLength * VERTEX_POINTS_PER_VOXEL * sizeof(GLfloat);
|
|
GLfloat* readVerticesFrom = _readVerticesArray + (segmentStart * VERTEX_POINTS_PER_VOXEL);
|
|
glBindBuffer(GL_ARRAY_BUFFER, _vboVerticesID);
|
|
glBufferSubData(GL_ARRAY_BUFFER, segmentStartAt, segmentSizeBytes, readVerticesFrom);
|
|
segmentStartAt = segmentStart * VERTEX_POINTS_PER_VOXEL * sizeof(GLubyte);
|
|
segmentSizeBytes = segmentLength * VERTEX_POINTS_PER_VOXEL * sizeof(GLubyte);
|
|
GLubyte* readColorsFrom = _readColorsArray + (segmentStart * VERTEX_POINTS_PER_VOXEL);
|
|
glBindBuffer(GL_ARRAY_BUFFER, _vboColorsID);
|
|
glBufferSubData(GL_ARRAY_BUFFER, segmentStartAt, segmentSizeBytes, readColorsFrom);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
_voxelsDirty = false;
|
|
}
|
|
_callsToTreesToArrays = 0; // clear it
|
|
}
|
|
|
|
void VoxelSystem::render() {
|
|
PerformanceWarning warn(_renderWarningsOn, "render()");
|
|
glPushMatrix();
|
|
updateVBOs();
|
|
// tell OpenGL where to find vertex and color information
|
|
glEnableClientState(GL_VERTEX_ARRAY);
|
|
glEnableClientState(GL_NORMAL_ARRAY);
|
|
glEnableClientState(GL_COLOR_ARRAY);
|
|
|
|
glBindBuffer(GL_ARRAY_BUFFER, _vboVerticesID);
|
|
glVertexPointer(3, GL_FLOAT, 0, 0);
|
|
|
|
glBindBuffer(GL_ARRAY_BUFFER, _vboNormalsID);
|
|
glNormalPointer(GL_FLOAT, 0, 0);
|
|
|
|
glBindBuffer(GL_ARRAY_BUFFER, _vboColorsID);
|
|
glColorPointer(3, GL_UNSIGNED_BYTE, 0, 0);
|
|
|
|
// draw the number of voxels we have
|
|
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, _vboIndicesID);
|
|
glScalef(TREE_SCALE, TREE_SCALE, TREE_SCALE);
|
|
glDrawElements(GL_TRIANGLES, 36 * _voxelsInReadArrays, GL_UNSIGNED_INT, 0);
|
|
|
|
// deactivate vertex and color arrays after drawing
|
|
glDisableClientState(GL_VERTEX_ARRAY);
|
|
glDisableClientState(GL_NORMAL_ARRAY);
|
|
glDisableClientState(GL_COLOR_ARRAY);
|
|
|
|
// bind with 0 to switch back to normal operation
|
|
glBindBuffer(GL_ARRAY_BUFFER, 0);
|
|
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
|
|
|
|
// scale back down to 1 so heads aren't massive
|
|
glPopMatrix();
|
|
}
|
|
|
|
int VoxelSystem::_nodeCount = 0;
|
|
|
|
void VoxelSystem::killLocalVoxels() {
|
|
_tree->eraseAllVoxels();
|
|
_voxelsInWriteArrays = _voxelsInReadArrays = 0; // better way to do this??
|
|
//setupNewVoxelsForDrawing();
|
|
}
|
|
|
|
|
|
bool VoxelSystem::randomColorOperation(VoxelNode* node, void* extraData) {
|
|
_nodeCount++;
|
|
if (node->isColored()) {
|
|
nodeColor newColor = { 255, randomColorValue(150), randomColorValue(150), 1 };
|
|
node->setColor(newColor);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void VoxelSystem::randomizeVoxelColors() {
|
|
_nodeCount = 0;
|
|
_tree->recurseTreeWithOperation(randomColorOperation);
|
|
printLog("setting randomized true color for %d nodes\n", _nodeCount);
|
|
setupNewVoxelsForDrawing();
|
|
}
|
|
|
|
bool VoxelSystem::falseColorizeRandomOperation(VoxelNode* node, void* extraData) {
|
|
_nodeCount++;
|
|
// always false colorize
|
|
node->setFalseColor(255, randomColorValue(150), randomColorValue(150));
|
|
return true; // keep going!
|
|
}
|
|
|
|
void VoxelSystem::falseColorizeRandom() {
|
|
_nodeCount = 0;
|
|
_tree->recurseTreeWithOperation(falseColorizeRandomOperation);
|
|
printLog("setting randomized false color for %d nodes\n", _nodeCount);
|
|
setupNewVoxelsForDrawing();
|
|
}
|
|
|
|
bool VoxelSystem::trueColorizeOperation(VoxelNode* node, void* extraData) {
|
|
_nodeCount++;
|
|
node->setFalseColored(false);
|
|
return true;
|
|
}
|
|
|
|
void VoxelSystem::trueColorize() {
|
|
PerformanceWarning warn(true, "trueColorize()",true);
|
|
_nodeCount = 0;
|
|
_tree->recurseTreeWithOperation(trueColorizeOperation);
|
|
printLog("setting true color for %d nodes\n", _nodeCount);
|
|
setupNewVoxelsForDrawing();
|
|
}
|
|
|
|
// Will false colorize voxels that are not in view
|
|
bool VoxelSystem::falseColorizeInViewOperation(VoxelNode* node, void* extraData) {
|
|
const ViewFrustum* viewFrustum = (const ViewFrustum*) extraData;
|
|
_nodeCount++;
|
|
if (node->isColored()) {
|
|
if (!node->isInView(*viewFrustum)) {
|
|
// Out of view voxels are colored RED
|
|
node->setFalseColor(255, 0, 0);
|
|
}
|
|
}
|
|
return true; // keep going!
|
|
}
|
|
|
|
void VoxelSystem::falseColorizeInView(ViewFrustum* viewFrustum) {
|
|
_nodeCount = 0;
|
|
_tree->recurseTreeWithOperation(falseColorizeInViewOperation,(void*)viewFrustum);
|
|
printLog("setting in view false color for %d nodes\n", _nodeCount);
|
|
setupNewVoxelsForDrawing();
|
|
}
|
|
|
|
// Will false colorize voxels based on distance from view
|
|
bool VoxelSystem::falseColorizeDistanceFromViewOperation(VoxelNode* node, void* extraData) {
|
|
ViewFrustum* viewFrustum = (ViewFrustum*) extraData;
|
|
if (node->isColored()) {
|
|
float distance = node->distanceToCamera(*viewFrustum);
|
|
_nodeCount++;
|
|
float distanceRatio = (_minDistance == _maxDistance) ? 1 : (distance - _minDistance) / (_maxDistance - _minDistance);
|
|
|
|
// We want to colorize this in 16 bug chunks of color
|
|
const unsigned char maxColor = 255;
|
|
const unsigned char colorBands = 16;
|
|
const unsigned char gradientOver = 128;
|
|
unsigned char colorBand = (colorBands * distanceRatio);
|
|
node->setFalseColor((colorBand * (gradientOver / colorBands)) + (maxColor - gradientOver), 0, 0);
|
|
}
|
|
return true; // keep going!
|
|
}
|
|
|
|
float VoxelSystem::_maxDistance = 0.0;
|
|
float VoxelSystem::_minDistance = FLT_MAX;
|
|
|
|
// Helper function will get the distance from view range, would be nice if you could just keep track
|
|
// of this as voxels are created and/or colored... seems like some transform math could do that so
|
|
// we wouldn't need to do two passes of the tree
|
|
bool VoxelSystem::getDistanceFromViewRangeOperation(VoxelNode* node, void* extraData) {
|
|
ViewFrustum* viewFrustum = (ViewFrustum*) extraData;
|
|
// only do this for truly colored voxels...
|
|
if (node->isColored()) {
|
|
float distance = node->distanceToCamera(*viewFrustum);
|
|
// calculate the range of distances
|
|
if (distance > _maxDistance) {
|
|
_maxDistance = distance;
|
|
}
|
|
if (distance < _minDistance) {
|
|
_minDistance = distance;
|
|
}
|
|
_nodeCount++;
|
|
}
|
|
return true; // keep going!
|
|
}
|
|
|
|
void VoxelSystem::falseColorizeDistanceFromView(ViewFrustum* viewFrustum) {
|
|
_nodeCount = 0;
|
|
_maxDistance = 0.0;
|
|
_minDistance = FLT_MAX;
|
|
_tree->recurseTreeWithOperation(getDistanceFromViewRangeOperation,(void*)viewFrustum);
|
|
printLog("determining distance range for %d nodes\n", _nodeCount);
|
|
_nodeCount = 0;
|
|
_tree->recurseTreeWithOperation(falseColorizeDistanceFromViewOperation,(void*)viewFrustum);
|
|
printLog("setting in distance false color for %d nodes\n", _nodeCount);
|
|
setupNewVoxelsForDrawing();
|
|
}
|
|
|
|
// combines the removeOutOfView args into a single class
|
|
class removeOutOfViewArgs {
|
|
public:
|
|
VoxelSystem* thisVoxelSystem;
|
|
VoxelNodeBag dontRecurseBag;
|
|
unsigned long nodesScanned;
|
|
unsigned long nodesRemoved;
|
|
unsigned long nodesInside;
|
|
unsigned long nodesIntersect;
|
|
unsigned long nodesOutside;
|
|
|
|
removeOutOfViewArgs(VoxelSystem* voxelSystem) :
|
|
thisVoxelSystem(voxelSystem),
|
|
dontRecurseBag(),
|
|
nodesScanned(0),
|
|
nodesRemoved(0),
|
|
nodesInside(0),
|
|
nodesIntersect(0),
|
|
nodesOutside(0)
|
|
{ }
|
|
};
|
|
|
|
// "Remove" voxels from the tree that are not in view. We don't actually delete them,
|
|
// we remove them from the tree and place them into a holding area for later deletion
|
|
bool VoxelSystem::removeOutOfViewOperation(VoxelNode* node, void* extraData) {
|
|
removeOutOfViewArgs* args = (removeOutOfViewArgs*)extraData;
|
|
|
|
// If our node was previously added to the don't recurse bag, then return false to
|
|
// stop the further recursion. This means that the whole node and it's children are
|
|
// known to be in view, so don't recurse them
|
|
if (args->dontRecurseBag.contains(node)) {
|
|
args->dontRecurseBag.remove(node);
|
|
return false; // stop recursion
|
|
}
|
|
|
|
VoxelSystem* thisVoxelSystem = args->thisVoxelSystem;
|
|
args->nodesScanned++;
|
|
// Need to operate on our child nodes, so we can remove them
|
|
for (int i = 0; i < NUMBER_OF_CHILDREN; i++) {
|
|
VoxelNode* childNode = node->getChildAtIndex(i);
|
|
if (childNode) {
|
|
ViewFrustum::location inFrustum = childNode->inFrustum(*thisVoxelSystem->_viewFrustum);
|
|
switch (inFrustum) {
|
|
case ViewFrustum::OUTSIDE: {
|
|
args->nodesOutside++;
|
|
args->nodesRemoved++;
|
|
node->removeChildAtIndex(i);
|
|
thisVoxelSystem->_removedVoxels.insert(childNode);
|
|
// by removing the child, it will not get recursed!
|
|
} break;
|
|
case ViewFrustum::INSIDE: {
|
|
// if the child node is fully INSIDE the view, then there's no need to recurse it
|
|
// because we know all it's children will also be in the view, so we want to
|
|
// tell the caller to NOT recurse this child
|
|
args->nodesInside++;
|
|
args->dontRecurseBag.insert(childNode);
|
|
} break;
|
|
case ViewFrustum::INTERSECT: {
|
|
// if the child node INTERSECTs the view, then we don't want to remove it because
|
|
// it is at least partially in view. But we DO want to recurse the children because
|
|
// some of them may not be in view... nothing specifically to do, just keep iterating
|
|
// the children
|
|
args->nodesIntersect++;
|
|
} break;
|
|
}
|
|
}
|
|
}
|
|
return true; // keep going!
|
|
}
|
|
|
|
bool VoxelSystem::hasViewChanged() {
|
|
bool result = false; // assume the best
|
|
if (_viewFrustum && !_lastKnowViewFrustum.matches(_viewFrustum)) {
|
|
result = true;
|
|
_lastKnowViewFrustum = *_viewFrustum; // save last known
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void VoxelSystem::removeOutOfView() {
|
|
PerformanceWarning warn(_renderWarningsOn, "removeOutOfView()");
|
|
removeOutOfViewArgs args(this);
|
|
_tree->recurseTreeWithOperation(removeOutOfViewOperation,(void*)&args);
|
|
|
|
if (_renderWarningsOn) {
|
|
printLog("removeOutOfView() scanned=%ld removed=%ld inside=%ld intersect=%ld outside=%ld _removedVoxels.count()=%d \n",
|
|
args.nodesScanned, args.nodesRemoved, args.nodesInside,
|
|
args.nodesIntersect, args.nodesOutside, _removedVoxels.count()
|
|
);
|
|
}
|
|
}
|