overte/libraries/render-utils/src/ambient_occlusion.slf
2015-08-01 14:43:52 -07:00

248 lines
No EOL
6.2 KiB
Text

<@include gpu/Config.slh@>
<$VERSION_HEADER$>
// Generated on <$_SCRIBE_DATE$>
//
// ambient_occlusion.frag
// fragment shader
//
// Created by Niraj Venkat on 7/15/15.
// Copyright 2015 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
<@include DeferredBufferWrite.slh@>
<@include gpu/Transform.slh@>
<$declareStandardTransform()$>
// Based on NVidia HBAO implementation in D3D11
// http://www.nvidia.co.uk/object/siggraph-2008-HBAO.html
in vec2 varTexcoord;
uniform sampler2D depthTexture;
uniform sampler2D normalTexture;
uniform float g_scale;
uniform float g_bias;
uniform float g_sample_rad;
uniform float g_intensity;
uniform float bufferWidth;
uniform float bufferHeight;
const float PI = 3.14159265;
const vec2 FocalLen = vec2(1.0, 1.0);
const vec2 LinMAD = vec2(0.1-10.0, 0.1+10.0) / (2.0*0.1*10.0);
const vec2 AORes = vec2(1024.0, 768.0);
const vec2 InvAORes = vec2(1.0/1024.0, 1.0/768.0);
const vec2 NoiseScale = vec2(1024.0, 768.0) / 4.0;
const float AOStrength = 1.9;
const float R = 0.3;
const float R2 = 0.3*0.3;
const float NegInvR2 = - 1.0 / (0.3*0.3);
// can't use tan to initialize a const value
const float TanBias = 0.57735027; // tan(30.0 * PI / 180.0);
const float MaxRadiusPixels = 50.0;
const int NumDirections = 6;
const int NumSamples = 4;
out vec4 outFragColor;
float ViewSpaceZFromDepth(float d){
// [0,1] -> [-1,1] clip space
d = d * 2.0 - 1.0;
// Get view space Z
return -1.0 / (LinMAD.x * d + LinMAD.y);
}
vec3 UVToViewSpace(vec2 uv, float z){
//uv = UVToViewA * uv + UVToViewB;
return vec3(uv * z, z);
}
vec3 GetViewPos(vec2 uv){
float z = ViewSpaceZFromDepth(texture(depthTexture, uv).r);
return UVToViewSpace(uv, z);
}
vec3 GetViewPosPoint(ivec2 uv){
vec2 coord = vec2(gl_FragCoord.xy) + uv;
//float z = texelFetch(texture0, coord, 0).r;
float z = texture(depthTexture, uv).r;
return UVToViewSpace(uv, z);
}
float TanToSin(float x){
return x * inversesqrt(x*x + 1.0);
}
float InvLength(vec2 V){
return inversesqrt(dot(V,V));
}
float Tangent(vec3 V){
return V.z * InvLength(V.xy);
}
float BiasedTangent(vec3 V){
return V.z * InvLength(V.xy) + TanBias;
}
float Tangent(vec3 P, vec3 S){
return -(P.z - S.z) * InvLength(S.xy - P.xy);
}
float Length2(vec3 V){
return dot(V,V);
}
vec3 MinDiff(vec3 P, vec3 Pr, vec3 Pl){
vec3 V1 = Pr - P;
vec3 V2 = P - Pl;
return (Length2(V1) < Length2(V2)) ? V1 : V2;
}
vec2 SnapUVOffset(vec2 uv){
return round(uv * AORes) * InvAORes;
}
float Falloff(float d2){
return d2 * NegInvR2 + 1.0f;
}
float HorizonOcclusion( vec2 deltaUV, vec3 P, vec3 dPdu, vec3 dPdv, float randstep, float numSamples){
float ao = 0;
// Offset the first coord with some noise
vec2 uv = varTexcoord + SnapUVOffset(randstep*deltaUV);
deltaUV = SnapUVOffset( deltaUV );
// Calculate the tangent vector
vec3 T = deltaUV.x * dPdu + deltaUV.y * dPdv;
// Get the angle of the tangent vector from the viewspace axis
float tanH = BiasedTangent(T);
float sinH = TanToSin(tanH);
float tanS;
float d2;
vec3 S;
// Sample to find the maximum angle
for(float s = 1; s <= numSamples; ++s){
uv += deltaUV;
S = GetViewPos(uv);
tanS = Tangent(P, S);
d2 = Length2(S - P);
// Is the sample within the radius and the angle greater?
if(d2 < R2 && tanS > tanH)
{
float sinS = TanToSin(tanS);
// Apply falloff based on the distance
ao += Falloff(d2) * (sinS - sinH);
tanH = tanS;
sinH = sinS;
}
}
return ao;
}
vec2 RotateDirections(vec2 Dir, vec2 CosSin){
return vec2(Dir.x*CosSin.x - Dir.y*CosSin.y, Dir.x*CosSin.y + Dir.y*CosSin.x);
}
void ComputeSteps(inout vec2 stepSizeUv, inout float numSteps, float rayRadiusPix, float rand){
// Avoid oversampling if numSteps is greater than the kernel radius in pixels
numSteps = min(NumSamples, rayRadiusPix);
// Divide by Ns+1 so that the farthest samples are not fully attenuated
float stepSizePix = rayRadiusPix / (numSteps + 1);
// Clamp numSteps if it is greater than the max kernel footprint
float maxNumSteps = MaxRadiusPixels / stepSizePix;
if (maxNumSteps < numSteps)
{
// Use dithering to avoid AO discontinuities
numSteps = floor(maxNumSteps + rand);
numSteps = max(numSteps, 1);
stepSizePix = MaxRadiusPixels / numSteps;
}
// Step size in uv space
stepSizeUv = stepSizePix * InvAORes;
}
float getRandom(vec2 uv){
return fract(sin(dot(uv.xy ,vec2(12.9898,78.233))) * 43758.5453);
}
void main(void){
float numDirections = NumDirections;
vec3 P, Pr, Pl, Pt, Pb;
P = GetViewPos(varTexcoord);
// Sample neighboring pixels
Pr = GetViewPos(varTexcoord + vec2( InvAORes.x, 0));
Pl = GetViewPos(varTexcoord + vec2(-InvAORes.x, 0));
Pt = GetViewPos(varTexcoord + vec2( 0, InvAORes.y));
Pb = GetViewPos(varTexcoord + vec2( 0,-InvAORes.y));
// Calculate tangent basis vectors using the minimum difference
vec3 dPdu = MinDiff(P, Pr, Pl);
vec3 dPdv = MinDiff(P, Pt, Pb) * (AORes.y * InvAORes.x);
// Get the random samples from the noise function
vec3 random = vec3(getRandom(varTexcoord.xy), getRandom(varTexcoord.yx), getRandom(varTexcoord.xx));
// Calculate the projected size of the hemisphere
vec2 rayRadiusUV = 0.5 * R * FocalLen / -P.z;
float rayRadiusPix = rayRadiusUV.x * AORes.x;
float ao = 1.0;
// Make sure the radius of the evaluated hemisphere is more than a pixel
if(rayRadiusPix > 1.0){
ao = 0.0;
float numSteps;
vec2 stepSizeUV;
// Compute the number of steps
ComputeSteps(stepSizeUV, numSteps, rayRadiusPix, random.z);
float alpha = 2.0 * PI / numDirections;
// Calculate the horizon occlusion of each direction
for(float d = 0; d < numDirections; ++d){
float theta = alpha * d;
// Apply noise to the direction
vec2 dir = RotateDirections(vec2(cos(theta), sin(theta)), random.xy);
vec2 deltaUV = dir * stepSizeUV;
// Sample the pixels along the direction
ao += HorizonOcclusion( deltaUV,
P,
dPdu,
dPdv,
random.z,
numSteps);
}
// Average the results and produce the final AO
ao = 1.0 - ao / numDirections * AOStrength;
}
outFragColor = vec4(vec3(ao), 1.0);
}