overte/libraries/audio/src/AudioRingBuffer.cpp
2014-03-21 18:44:59 -07:00

207 lines
7.1 KiB
C++

//
// AudioRingBuffer.cpp
// interface
//
// Created by Stephen Birarda on 2/1/13.
// Copyright (c) 2013 HighFidelity, Inc. All rights reserved.
//
#include <cstring>
#include <math.h>
#include <QtCore/QDebug>
#include "PacketHeaders.h"
#include "AudioRingBuffer.h"
AudioRingBuffer::AudioRingBuffer(int numFrameSamples) :
NodeData(),
_sampleCapacity(numFrameSamples * RING_BUFFER_LENGTH_FRAMES),
_isStarved(true),
_hasStarted(false),
_averageLoudness(0)
{
if (numFrameSamples) {
_buffer = new int16_t[_sampleCapacity];
_nextOutput = _buffer;
_endOfLastWrite = _buffer;
} else {
_buffer = NULL;
_nextOutput = NULL;
_endOfLastWrite = NULL;
}
};
AudioRingBuffer::~AudioRingBuffer() {
delete[] _buffer;
}
void AudioRingBuffer::reset() {
_endOfLastWrite = _buffer;
_nextOutput = _buffer;
_isStarved = true;
}
void AudioRingBuffer::resizeForFrameSize(qint64 numFrameSamples) {
delete[] _buffer;
_sampleCapacity = numFrameSamples * RING_BUFFER_LENGTH_FRAMES;
_buffer = new int16_t[_sampleCapacity];
_nextOutput = _buffer;
_endOfLastWrite = _buffer;
}
int AudioRingBuffer::parseData(const QByteArray& packet) {
int numBytesPacketHeader = numBytesForPacketHeader(packet);
return writeData(packet.data() + numBytesPacketHeader, packet.size() - numBytesPacketHeader);
}
void AudioRingBuffer::updateAverageLoudnessForBoundarySamples(int numSamples) {
// ForBoundarySamples means that we expect the number of samples not to roll of the end of the ring buffer
float nextLoudness = 0;
for (int i = 0; i < numSamples; ++i) {
nextLoudness += fabsf(_nextOutput[i]);
}
nextLoudness /= numSamples;
nextLoudness /= MAX_SAMPLE_VALUE;
const int TRAILING_AVERAGE_FRAMES = 100;
const float CURRENT_FRAME_RATIO = 1.0f / TRAILING_AVERAGE_FRAMES;
const float PREVIOUS_FRAMES_RATIO = 1.0f - CURRENT_FRAME_RATIO;
const float LOUDNESS_EPSILON = 0.01f;
if (nextLoudness >= _averageLoudness) {
_averageLoudness = nextLoudness;
} else {
_averageLoudness = (_averageLoudness * PREVIOUS_FRAMES_RATIO) + (CURRENT_FRAME_RATIO * nextLoudness);
if (_averageLoudness < LOUDNESS_EPSILON) {
_averageLoudness = 0;
}
}
}
qint64 AudioRingBuffer::readSamples(int16_t* destination, qint64 maxSamples) {
return readData((char*) destination, maxSamples * sizeof(int16_t));
}
qint64 AudioRingBuffer::readData(char *data, qint64 maxSize) {
// only copy up to the number of samples we have available
int numReadSamples = std::min((unsigned) (maxSize / sizeof(int16_t)), samplesAvailable());
if (_nextOutput + numReadSamples > _buffer + _sampleCapacity) {
// we're going to need to do two reads to get this data, it wraps around the edge
// read to the end of the buffer
int numSamplesToEnd = (_buffer + _sampleCapacity) - _nextOutput;
memcpy(data, _nextOutput, numSamplesToEnd * sizeof(int16_t));
// read the rest from the beginning of the buffer
memcpy(data + (numSamplesToEnd * sizeof(int16_t)), _buffer, (numReadSamples - numSamplesToEnd) * sizeof(int16_t));
} else {
// read the data
memcpy(data, _nextOutput, numReadSamples * sizeof(int16_t));
}
// push the position of _nextOutput by the number of samples read
_nextOutput = shiftedPositionAccomodatingWrap(_nextOutput, numReadSamples);
return numReadSamples * sizeof(int16_t);
}
qint64 AudioRingBuffer::writeSamples(const int16_t* source, qint64 maxSamples) {
return writeData((const char*) source, maxSamples * sizeof(int16_t));
}
qint64 AudioRingBuffer::writeData(const char* data, qint64 maxSize) {
// make sure we have enough bytes left for this to be the right amount of audio
// otherwise we should not copy that data, and leave the buffer pointers where they are
int samplesToCopy = std::min((quint64)(maxSize / sizeof(int16_t)), (quint64)_sampleCapacity);
std::less<int16_t*> less;
std::less_equal<int16_t*> lessEqual;
if (_hasStarted
&& (less(_endOfLastWrite, _nextOutput)
&& lessEqual(_nextOutput, shiftedPositionAccomodatingWrap(_endOfLastWrite, samplesToCopy)))) {
// this read will cross the next output, so call us starved and reset the buffer
qDebug() << "Filled the ring buffer. Resetting.";
_endOfLastWrite = _buffer;
_nextOutput = _buffer;
_isStarved = true;
}
if (_endOfLastWrite + samplesToCopy <= _buffer + _sampleCapacity) {
memcpy(_endOfLastWrite, data, samplesToCopy * sizeof(int16_t));
} else {
int numSamplesToEnd = (_buffer + _sampleCapacity) - _endOfLastWrite;
memcpy(_endOfLastWrite, data, numSamplesToEnd * sizeof(int16_t));
memcpy(_buffer, data + (numSamplesToEnd * sizeof(int16_t)), (samplesToCopy - numSamplesToEnd) * sizeof(int16_t));
}
_endOfLastWrite = shiftedPositionAccomodatingWrap(_endOfLastWrite, samplesToCopy);
return samplesToCopy * sizeof(int16_t);
}
int16_t& AudioRingBuffer::operator[](const int index) {
return *shiftedPositionAccomodatingWrap(_nextOutput, index);
}
void AudioRingBuffer::shiftReadPosition(unsigned int numSamples) {
_nextOutput = shiftedPositionAccomodatingWrap(_nextOutput, numSamples);
}
unsigned int AudioRingBuffer::samplesAvailable() const {
if (!_endOfLastWrite) {
return 0;
} else {
int sampleDifference = _endOfLastWrite - _nextOutput;
if (sampleDifference < 0) {
sampleDifference += _sampleCapacity;
}
return sampleDifference;
}
}
void AudioRingBuffer::addSilentFrame(int numSilentSamples) {
// memset zeroes into the buffer, accomodate a wrap around the end
// push the _endOfLastWrite to the correct spot
if (_endOfLastWrite + numSilentSamples <= _buffer + _sampleCapacity) {
memset(_endOfLastWrite, 0, numSilentSamples * sizeof(int16_t));
_endOfLastWrite += numSilentSamples;
} else {
int numSamplesToEnd = (_buffer + _sampleCapacity) - _endOfLastWrite;
memset(_endOfLastWrite, 0, numSamplesToEnd * sizeof(int16_t));
memset(_buffer, 0, (numSilentSamples - numSamplesToEnd) * sizeof(int16_t));
_endOfLastWrite = _buffer + (numSilentSamples - numSamplesToEnd);
}
}
bool AudioRingBuffer::isNotStarvedOrHasMinimumSamples(unsigned int numRequiredSamples) const {
if (!_isStarved) {
return true;
} else {
return samplesAvailable() >= numRequiredSamples;
}
}
int16_t* AudioRingBuffer::shiftedPositionAccomodatingWrap(int16_t* position, int numSamplesShift) const {
if (numSamplesShift > 0 && position + numSamplesShift >= _buffer + _sampleCapacity) {
// this shift will wrap the position around to the beginning of the ring
return position + numSamplesShift - _sampleCapacity;
} else if (numSamplesShift < 0 && position + numSamplesShift < _buffer) {
// this shift will go around to the end of the ring
return position + numSamplesShift + _sampleCapacity;
} else {
return position + numSamplesShift;
}
}