overte/interface/src/Util.cpp
2015-09-21 13:27:02 -07:00

346 lines
14 KiB
C++

//
// Util.cpp
// interface/src
//
// Created by Philip Rosedale on 8/24/12.
// Copyright 2012 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include <iostream>
#include <cstring>
#include <time.h>
#include <math.h>
#include <glm/glm.hpp>
#include <glm/gtc/noise.hpp>
#include <glm/gtx/quaternion.hpp>
#include <glm/detail/func_common.hpp>
#include <QThread>
#include <ByteCountCoding.h>
#include <SharedUtil.h>
#include <DeferredLightingEffect.h>
#include "world.h"
#include "Application.h"
#include "InterfaceLogging.h"
#include "Util.h"
using namespace std;
void renderWorldBox(gpu::Batch& batch) {
auto geometryCache = DependencyManager::get<GeometryCache>();
// Show center of world
static const glm::vec3 RED(1.0f, 0.0f, 0.0f);
static const glm::vec3 GREEN(0.0f, 1.0f, 0.0f);
static const glm::vec3 BLUE(0.0f, 0.0f, 1.0f);
static const glm::vec3 GREY(0.5f, 0.5f, 0.5f);
static const glm::vec4 GREY4(0.5f, 0.5f, 0.5f, 1.0f);
static const glm::vec4 DASHED_RED(1.0f, 0.0f, 0.0f, 1.0f);
static const glm::vec4 DASHED_GREEN(0.0f, 1.0f, 0.0f, 1.0f);
static const glm::vec4 DASHED_BLUE(0.0f, 0.0f, 1.0f, 1.0f);
static const float DASH_LENGTH = 1.0f;
static const float GAP_LENGTH = 1.0f;
auto transform = Transform{};
batch.setModelTransform(transform);
geometryCache->renderLine(batch, glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(HALF_TREE_SCALE, 0.0f, 0.0f), RED);
geometryCache->renderDashedLine(batch, glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(-HALF_TREE_SCALE, 0.0f, 0.0f), DASHED_RED,
DASH_LENGTH, GAP_LENGTH);
geometryCache->renderLine(batch, glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, HALF_TREE_SCALE, 0.0f), GREEN);
geometryCache->renderDashedLine(batch, glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, -HALF_TREE_SCALE, 0.0f), DASHED_GREEN,
DASH_LENGTH, GAP_LENGTH);
geometryCache->renderLine(batch, glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, 0.0f, HALF_TREE_SCALE), BLUE);
geometryCache->renderDashedLine(batch, glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, 0.0f, -HALF_TREE_SCALE), DASHED_BLUE,
DASH_LENGTH, GAP_LENGTH);
// X center boundaries
geometryCache->renderLine(batch, glm::vec3(-HALF_TREE_SCALE, -HALF_TREE_SCALE, 0.0f),
glm::vec3(HALF_TREE_SCALE, -HALF_TREE_SCALE, 0.0f), GREY);
geometryCache->renderLine(batch, glm::vec3(-HALF_TREE_SCALE, -HALF_TREE_SCALE, 0.0f),
glm::vec3(-HALF_TREE_SCALE, HALF_TREE_SCALE, 0.0f), GREY);
geometryCache->renderLine(batch, glm::vec3(-HALF_TREE_SCALE, HALF_TREE_SCALE, 0.0f),
glm::vec3(HALF_TREE_SCALE, HALF_TREE_SCALE, 0.0f), GREY);
geometryCache->renderLine(batch, glm::vec3(HALF_TREE_SCALE, -HALF_TREE_SCALE, 0.0f),
glm::vec3(HALF_TREE_SCALE, HALF_TREE_SCALE, 0.0f), GREY);
// Z center boundaries
geometryCache->renderLine(batch, glm::vec3(0.0f, -HALF_TREE_SCALE, -HALF_TREE_SCALE),
glm::vec3(0.0f, -HALF_TREE_SCALE, HALF_TREE_SCALE), GREY);
geometryCache->renderLine(batch, glm::vec3(0.0f, -HALF_TREE_SCALE, -HALF_TREE_SCALE),
glm::vec3(0.0f, HALF_TREE_SCALE, -HALF_TREE_SCALE), GREY);
geometryCache->renderLine(batch, glm::vec3(0.0f, HALF_TREE_SCALE, -HALF_TREE_SCALE),
glm::vec3(0.0f, HALF_TREE_SCALE, HALF_TREE_SCALE), GREY);
geometryCache->renderLine(batch, glm::vec3(0.0f, -HALF_TREE_SCALE, HALF_TREE_SCALE),
glm::vec3(0.0f, HALF_TREE_SCALE, HALF_TREE_SCALE), GREY);
// Center boundaries
geometryCache->renderLine(batch, glm::vec3(-HALF_TREE_SCALE, 0.0f, -HALF_TREE_SCALE),
glm::vec3(-HALF_TREE_SCALE, 0.0f, HALF_TREE_SCALE), GREY);
geometryCache->renderLine(batch, glm::vec3(-HALF_TREE_SCALE, 0.0f, -HALF_TREE_SCALE),
glm::vec3(HALF_TREE_SCALE, 0.0f, -HALF_TREE_SCALE), GREY);
geometryCache->renderLine(batch, glm::vec3(HALF_TREE_SCALE, 0.0f, -HALF_TREE_SCALE),
glm::vec3(HALF_TREE_SCALE, 0.0f, HALF_TREE_SCALE), GREY);
geometryCache->renderLine(batch, glm::vec3(-HALF_TREE_SCALE, 0.0f, HALF_TREE_SCALE),
glm::vec3(HALF_TREE_SCALE, 0.0f, HALF_TREE_SCALE), GREY);
auto deferredLighting = DependencyManager::get<DeferredLightingEffect>();
deferredLighting->renderWireCubeInstance(batch, Transform(), GREY4);
// Draw meter markers along the 3 axis to help with measuring things
const float MARKER_DISTANCE = 1.0f;
const float MARKER_RADIUS = 0.05f;
transform = Transform().setScale(MARKER_RADIUS);
deferredLighting->renderSolidSphereInstance(batch, transform, RED);
transform = Transform().setTranslation(glm::vec3(MARKER_DISTANCE, 0.0f, 0.0f)).setScale(MARKER_RADIUS);
deferredLighting->renderSolidSphereInstance(batch, transform, RED);
transform = Transform().setTranslation(glm::vec3(0.0f, MARKER_DISTANCE, 0.0f)).setScale(MARKER_RADIUS);
deferredLighting->renderSolidSphereInstance(batch, transform, GREEN);
transform = Transform().setTranslation(glm::vec3(0.0f, 0.0f, MARKER_DISTANCE)).setScale(MARKER_RADIUS);
deferredLighting->renderSolidSphereInstance(batch, transform, BLUE);
transform = Transform().setTranslation(glm::vec3(MARKER_DISTANCE, 0.0f, MARKER_DISTANCE)).setScale(MARKER_RADIUS);
deferredLighting->renderSolidSphereInstance(batch, transform, GREY);
}
// Return a random vector of average length 1
const glm::vec3 randVector() {
return glm::vec3(randFloat() - 0.5f, randFloat() - 0.5f, randFloat() - 0.5f) * 2.0f;
}
// Do some basic timing tests and report the results
void runTimingTests() {
// How long does it take to make a call to get the time?
const int numTests = 1000000;
int* iResults = (int*)malloc(sizeof(int) * numTests);
float fTest = 1.0;
float* fResults = (float*)malloc(sizeof(float) * numTests);
QElapsedTimer startTime;
startTime.start();
float elapsedUsecs;
float NSEC_TO_USEC = 1.0f / 1000.0f;
elapsedUsecs = (float)startTime.nsecsElapsed() * NSEC_TO_USEC;
qCDebug(interfaceapp, "QElapsedTimer::nsecElapsed() usecs: %f", (double)elapsedUsecs);
// Test sleep functions for accuracy
startTime.start();
QThread::msleep(1);
elapsedUsecs = (float)startTime.nsecsElapsed() * NSEC_TO_USEC;
qCDebug(interfaceapp, "QThread::msleep(1) ms: %f", (double)(elapsedUsecs / 1000.0f));
startTime.start();
QThread::sleep(1);
elapsedUsecs = (float)startTime.nsecsElapsed() * NSEC_TO_USEC;
qCDebug(interfaceapp, "QThread::sleep(1) ms: %f", (double)(elapsedUsecs / 1000.0f));
startTime.start();
usleep(1);
elapsedUsecs = (float)startTime.nsecsElapsed() * NSEC_TO_USEC;
qCDebug(interfaceapp, "usleep(1) ms: %f", (double)(elapsedUsecs / 1000.0f));
startTime.start();
usleep(10);
elapsedUsecs = (float)startTime.nsecsElapsed() * NSEC_TO_USEC;
qCDebug(interfaceapp, "usleep(10) ms: %f", (double)(elapsedUsecs / 1000.0f));
startTime.start();
usleep(100);
elapsedUsecs = (float)startTime.nsecsElapsed() * NSEC_TO_USEC;
qCDebug(interfaceapp, "usleep(100) ms: %f", (double)(elapsedUsecs / 1000.0f));
startTime.start();
usleep(1000);
elapsedUsecs = (float)startTime.nsecsElapsed() * NSEC_TO_USEC;
qCDebug(interfaceapp, "usleep(1000) ms: %f", (double)(elapsedUsecs / 1000.0f));
startTime.start();
usleep(15000);
elapsedUsecs = (float)startTime.nsecsElapsed() * NSEC_TO_USEC;
qCDebug(interfaceapp, "usleep(15000) ms: %f", (double)(elapsedUsecs / 1000.0f));
// Random number generation
startTime.start();
for (int i = 0; i < numTests; i++) {
iResults[i] = rand();
}
elapsedUsecs = (float)startTime.nsecsElapsed() * NSEC_TO_USEC;
qCDebug(interfaceapp, "rand() stored in array usecs: %f, first result:%d",
(double)(elapsedUsecs / numTests), iResults[0]);
// Random number generation using randFloat()
startTime.start();
for (int i = 0; i < numTests; i++) {
fResults[i] = randFloat();
}
elapsedUsecs = (float)startTime.nsecsElapsed() * NSEC_TO_USEC;
qCDebug(interfaceapp, "randFloat() stored in array usecs: %f, first result: %f",
(double)(elapsedUsecs / numTests), (double)(fResults[0]));
free(iResults);
free(fResults);
// PowF function
fTest = 1145323.2342f;
startTime.start();
for (int i = 0; i < numTests; i++) {
fTest = powf(fTest, 0.5f);
}
elapsedUsecs = (float)startTime.nsecsElapsed() * NSEC_TO_USEC;
qCDebug(interfaceapp, "powf(f, 0.5) usecs: %f", (double)(elapsedUsecs / (float) numTests));
// Vector Math
float distance;
glm::vec3 pointA(randVector()), pointB(randVector());
startTime.start();
for (int i = 0; i < numTests; i++) {
//glm::vec3 temp = pointA - pointB;
//float distanceSquared = glm::dot(temp, temp);
distance = glm::distance(pointA, pointB);
}
elapsedUsecs = (float)startTime.nsecsElapsed() * NSEC_TO_USEC;
qCDebug(interfaceapp, "vector math usecs: %f [%f usecs total for %d tests], last result:%f",
(double)(elapsedUsecs / (float) numTests), (double)elapsedUsecs, numTests, (double)distance);
// Vec3 test
glm::vec3 vecA(randVector()), vecB(randVector());
float result;
startTime.start();
for (int i = 0; i < numTests; i++) {
glm::vec3 temp = vecA-vecB;
result = glm::dot(temp,temp);
}
elapsedUsecs = (float)startTime.nsecsElapsed() * NSEC_TO_USEC;
qCDebug(interfaceapp, "vec3 assign and dot() usecs: %f, last result:%f",
(double)(elapsedUsecs / numTests), (double)result);
quint64 BYTE_CODE_MAX_TEST_VALUE = 99999999;
quint64 BYTE_CODE_TESTS_SKIP = 999;
QByteArray extraJunk;
const int EXTRA_JUNK_SIZE = 200;
extraJunk.append((unsigned char)255);
for (int i = 0; i < EXTRA_JUNK_SIZE; i++) {
extraJunk.append(QString("junk"));
}
{
startTime.start();
quint64 tests = 0;
quint64 failed = 0;
for (quint64 value = 0; value < BYTE_CODE_MAX_TEST_VALUE; value += BYTE_CODE_TESTS_SKIP) {
quint64 valueA = value; // usecTimestampNow();
ByteCountCoded<quint64> codedValueA = valueA;
QByteArray codedValueABuffer = codedValueA;
codedValueABuffer.append(extraJunk);
ByteCountCoded<quint64> decodedValueA;
decodedValueA.decode(codedValueABuffer);
quint64 valueADecoded = decodedValueA;
tests++;
if (valueA != valueADecoded) {
qDebug() << "FAILED! value:" << valueA << "decoded:" << valueADecoded;
failed++;
}
}
elapsedUsecs = (float)startTime.nsecsElapsed() * NSEC_TO_USEC;
qCDebug(interfaceapp) << "ByteCountCoded<quint64> usecs: " << elapsedUsecs
<< "per test:" << (double) (elapsedUsecs / tests)
<< "tests:" << tests
<< "failed:" << failed;
}
}
bool rayIntersectsSphere(const glm::vec3& rayStarting, const glm::vec3& rayNormalizedDirection,
const glm::vec3& sphereCenter, float sphereRadius, float& distance) {
glm::vec3 relativeOrigin = rayStarting - sphereCenter;
// compute the b, c terms of the quadratic equation (a is dot(direction, direction), which is one)
float b = 2.0f * glm::dot(rayNormalizedDirection, relativeOrigin);
float c = glm::dot(relativeOrigin, relativeOrigin) - sphereRadius * sphereRadius;
// compute the radicand of the quadratic. if less than zero, there's no intersection
float radicand = b * b - 4.0f * c;
if (radicand < 0.0f) {
return false;
}
// compute the first solution of the quadratic
float root = sqrtf(radicand);
float firstSolution = -b - root;
if (firstSolution > 0.0f) {
distance = firstSolution / 2.0f;
return true; // origin is outside the sphere
}
// now try the second solution
float secondSolution = -b + root;
if (secondSolution > 0.0f) {
distance = 0.0f;
return true; // origin is inside the sphere
}
return false;
}
bool pointInSphere(glm::vec3& point, glm::vec3& sphereCenter, double sphereRadius) {
glm::vec3 diff = point - sphereCenter;
double mag = sqrt(glm::dot(diff, diff));
if (mag <= sphereRadius) {
return true;
}
return false;
}
void runUnitTests() {
quint64 LAST_TEST = 10;
quint64 SKIP_BY = 1;
for (quint64 value = 0; value <= LAST_TEST; value += SKIP_BY) {
qDebug() << "value:" << value;
ByteCountCoded<quint64> codedValue = value;
QByteArray codedValueBuffer = codedValue;
codedValueBuffer.append((unsigned char)255);
codedValueBuffer.append(QString("junk"));
qDebug() << "codedValueBuffer:";
outputBufferBits((const unsigned char*)codedValueBuffer.constData(), codedValueBuffer.size());
ByteCountCoded<quint64> valueDecoder;
size_t bytesConsumed = valueDecoder.decode(codedValueBuffer);
quint64 valueDecoded = valueDecoder;
qDebug() << "valueDecoded:" << valueDecoded;
qDebug() << "bytesConsumed:" << bytesConsumed;
if (value == valueDecoded) {
qDebug() << "SUCCESS!";
} else {
qDebug() << "FAILED!";
}
}
}