overte/interface/src/avatar/MyCharacterController.cpp
2016-10-18 16:50:19 -07:00

321 lines
14 KiB
C++

//
// MyCharacterController.h
// interface/src/avatar
//
// Created by AndrewMeadows 2015.10.21
// Copyright 2015 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include "MyCharacterController.h"
#include <BulletUtil.h>
#include "MyAvatar.h"
// DONE TODO: improve walking up steps
// DONE TODO: make avatars able to walk up and down steps/slopes
// TODO: make avatars stand on steep slope
// TODO: make avatars not snag on low ceilings
void MyCharacterController::RayShotgunResult::reset() {
//hitNormal = glm::vec3(0.0f);
hitFraction = 1.0f;
//numHits = 0;
walkable = true;
}
MyCharacterController::MyCharacterController(MyAvatar* avatar) {
assert(avatar);
_avatar = avatar;
updateShapeIfNecessary();
}
MyCharacterController::~MyCharacterController() {
}
void MyCharacterController::setDynamicsWorld(btDynamicsWorld* world) {
CharacterController::setDynamicsWorld(world);
initRayShotgun(world);
}
void MyCharacterController::updateShapeIfNecessary() {
if (_pendingFlags & PENDING_FLAG_UPDATE_SHAPE) {
_pendingFlags &= ~PENDING_FLAG_UPDATE_SHAPE;
if (_radius > 0.0f) {
// create RigidBody if it doesn't exist
if (!_rigidBody) {
btCollisionShape* shape = computeShape();
// HACK: use some simple mass property defaults for now
const btScalar DEFAULT_AVATAR_MASS = 100.0f;
const btVector3 DEFAULT_AVATAR_INERTIA_TENSOR(30.0f, 8.0f, 30.0f);
_rigidBody = new btRigidBody(DEFAULT_AVATAR_MASS, nullptr, shape, DEFAULT_AVATAR_INERTIA_TENSOR);
} else {
btCollisionShape* shape = _rigidBody->getCollisionShape();
if (shape) {
delete shape;
}
shape = computeShape();
_rigidBody->setCollisionShape(shape);
}
_rigidBody->setSleepingThresholds(0.0f, 0.0f);
_rigidBody->setAngularFactor(0.0f);
_rigidBody->setWorldTransform(btTransform(glmToBullet(_avatar->getOrientation()),
glmToBullet(_avatar->getPosition())));
_rigidBody->setDamping(0.0f, 0.0f);
if (_state == State::Hover) {
_rigidBody->setGravity(btVector3(0.0f, 0.0f, 0.0f));
} else {
_rigidBody->setGravity(_gravity * _currentUp);
}
// KINEMATIC_CONTROLLER_HACK
if (_moveKinematically) {
_rigidBody->setCollisionFlags(btCollisionObject::CF_KINEMATIC_OBJECT);
} else {
_rigidBody->setCollisionFlags(_rigidBody->getCollisionFlags() &
~(btCollisionObject::CF_KINEMATIC_OBJECT | btCollisionObject::CF_STATIC_OBJECT));
}
} else {
// TODO: handle this failure case
}
}
}
bool MyCharacterController::testRayShotgun(const glm::vec3& position, const glm::vec3& step, RayShotgunResult& result) {
// get _ghost ready for ray traces
btTransform transform = _rigidBody->getWorldTransform();
btVector3 newPosition = glmToBullet(position);
transform.setOrigin(newPosition);
_ghost.setWorldTransform(transform);
btMatrix3x3 rotation = transform.getBasis();
_ghost.refreshOverlappingPairCache();
CharacterRayResult rayResult(&_ghost);
CharacterRayResult closestRayResult(&_ghost);
btVector3 rayStart;
btVector3 rayEnd;
btVector3 rayDirection = glmToBullet(step);
btScalar stepLength = rayDirection.length();
if (stepLength < FLT_EPSILON) {
return false;
}
rayDirection /= stepLength;
const btScalar backSlop = 0.04f;
// compute rotation that will orient local ray start points to face step direction
btVector3 forward = rotation * btVector3(0.0f, 0.0f, -1.0f);
btVector3 adjustedDirection = rayDirection - rayDirection.dot(_currentUp) * _currentUp;
btVector3 axis = forward.cross(adjustedDirection);
btScalar lengthAxis = axis.length();
if (lengthAxis > FLT_EPSILON) {
// we're walking sideways
btScalar angle = acosf(lengthAxis / adjustedDirection.length());
if (rayDirection.dot(forward) < 0.0f) {
angle = PI - angle;
}
axis /= lengthAxis;
rotation = btMatrix3x3(btQuaternion(axis, angle)) * rotation;
} else if (rayDirection.dot(forward) < 0.0f) {
// we're walking backwards
rotation = btMatrix3x3(btQuaternion(_currentUp, PI)) * rotation;
}
// scan the top
// NOTE: if we scan an extra distance forward we can detect flat surfaces that are too steep to walk on.
// The approximate extra distance can be derived with trigonometry.
//
// minimumForward = [ (maxStepHeight + radius / cosTheta - radius) * (cosTheta / sinTheta) - radius ]
//
// where: theta = max angle between floor normal and vertical
//
// if stepLength is not long enough we can add the difference.
//
btScalar cosTheta = _minFloorNormalDotUp;
btScalar sinTheta = sqrtf(1.0f - cosTheta * cosTheta);
const btScalar MIN_FORWARD_SLOP = 0.12f; // HACK: not sure why this is necessary to detect steepest walkable slope
btScalar forwardSlop = (_maxStepHeight + _radius / cosTheta - _radius) * (cosTheta / sinTheta) - (_radius + stepLength) + MIN_FORWARD_SLOP;
if (forwardSlop < 0.0f) {
// BIG step, no slop necessary
forwardSlop = 0.0f;
}
for (int32_t i = 0; i < _topPoints.size(); ++i) {
rayStart = newPosition + rotation * _topPoints[i] - backSlop * rayDirection;
rayEnd = rayStart + (backSlop + stepLength + forwardSlop) * rayDirection;
if (_ghost.rayTest(rayStart, rayEnd, rayResult)) {
if (rayResult.m_closestHitFraction < closestRayResult.m_closestHitFraction) {
closestRayResult = rayResult;
}
if (result.walkable) {
if (rayResult.m_hitNormalWorld.dot(_currentUp) < _minFloorNormalDotUp) {
result.walkable = false;
break;
}
}
}
}
if (!result.walkable) {
// the top scan wasn't walkable so don't bother scanning the bottom
// remove both forwardSlop and backSlop
result.hitFraction = glm::min(1.0f, (closestRayResult.m_closestHitFraction * (backSlop + stepLength + forwardSlop) - backSlop) / stepLength);
} else {
// remove forwardSlop
result.hitFraction = (closestRayResult.m_closestHitFraction * (backSlop + stepLength + forwardSlop)) / (backSlop + stepLength);
// scan the bottom
for (int32_t i = 0; i < _bottomPoints.size(); ++i) {
rayStart = newPosition + rotation * _bottomPoints[i] - backSlop * rayDirection;
rayEnd = rayStart + (backSlop + stepLength) * rayDirection;
if (_ghost.rayTest(rayStart, rayEnd, rayResult)) {
if (rayResult.m_closestHitFraction < closestRayResult.m_closestHitFraction) {
closestRayResult = rayResult;
}
}
}
// remove backSlop
// NOTE: backSlop removal can produce a NEGATIVE hitFraction!
// which means the shape is actually in interpenetration
result.hitFraction = ((closestRayResult.m_closestHitFraction * (backSlop + stepLength)) - backSlop) / stepLength;
}
return result.hitFraction < 1.0f;
}
btConvexHullShape* MyCharacterController::computeShape() const {
// HACK: the avatar collides using convex hull with a collision margin equal to
// the old capsule radius. Two points define a capsule and additional points are
// spread out at chest level to produce a slight taper toward the feet. This
// makes the avatar more likely to collide with vertical walls at a higher point
// and thus less likely to produce a single-point collision manifold below the
// _maxStepHeight when walking into against vertical surfaces --> fixes a bug
// where the "walk up steps" feature would allow the avatar to walk up vertical
// walls.
const int32_t NUM_POINTS = 6;
btVector3 points[NUM_POINTS];
btVector3 xAxis = btVector3(1.0f, 0.0f, 0.0f);
btVector3 yAxis = btVector3(0.0f, 1.0f, 0.0f);
btVector3 zAxis = btVector3(0.0f, 0.0f, 1.0f);
points[0] = _halfHeight * yAxis;
points[1] = -_halfHeight * yAxis;
points[2] = (0.75f * _halfHeight) * yAxis - (0.1f * _radius) * zAxis;
points[3] = (0.75f * _halfHeight) * yAxis + (0.1f * _radius) * zAxis;
points[4] = (0.75f * _halfHeight) * yAxis - (0.1f * _radius) * xAxis;
points[5] = (0.75f * _halfHeight) * yAxis + (0.1f * _radius) * xAxis;
btConvexHullShape* shape = new btConvexHullShape(reinterpret_cast<btScalar*>(points), NUM_POINTS);
shape->setMargin(_radius);
return shape;
}
void MyCharacterController::initRayShotgun(const btCollisionWorld* world) {
// In order to trace rays out from the avatar's shape surface we need to know where the start points are in
// the local-frame. Since the avatar shape is somewhat irregular computing these points by hand is a hassle
// so instead we ray-trace backwards to the avatar to find them.
//
// We trace back a regular grid (see below) of points against the shape and keep any that hit.
// ___
// + / + \ +
// |+ +|
// +| + | +
// |+ +|
// +| + | +
// |+ +|
// + \ + / +
// ---
// The shotgun will send rays out from these same points to see if the avatar's shape can proceed through space.
// helper class for simple ray-traces against character
class MeOnlyResultCallback : public btCollisionWorld::ClosestRayResultCallback {
public:
MeOnlyResultCallback (btRigidBody* me) : btCollisionWorld::ClosestRayResultCallback(btVector3(0.0f, 0.0f, 0.0f), btVector3(0.0f, 0.0f, 0.0f)) {
_me = me;
m_collisionFilterGroup = BULLET_COLLISION_GROUP_DYNAMIC;
m_collisionFilterMask = BULLET_COLLISION_MASK_DYNAMIC;
}
virtual btScalar addSingleResult(btCollisionWorld::LocalRayResult& rayResult,bool normalInWorldSpace) override {
if (rayResult.m_collisionObject != _me) {
return 1.0f;
}
return ClosestRayResultCallback::addSingleResult(rayResult, normalInWorldSpace);
}
btRigidBody* _me;
};
const btScalar fullHalfHeight = _radius + _halfHeight;
const btScalar divisionLine = -fullHalfHeight + _maxStepHeight; // line between top and bottom
const btScalar topHeight = fullHalfHeight - divisionLine;
const btScalar slop = 0.02f;
const int32_t numRows = 3; // must be odd number > 1
const int32_t numColumns = 3; // must be odd number > 1
btVector3 reach = (2.0f * _radius) * btVector3(0.0f, 0.0f, 1.0f);
{ // top points
_topPoints.clear();
_topPoints.reserve(numRows * numColumns);
btScalar stepY = (topHeight - slop) / (btScalar)(numRows - 1);
btScalar stepX = 2.0f * (_radius - slop) / (btScalar)(numColumns - 1);
btTransform transform = _rigidBody->getWorldTransform();
btVector3 position = transform.getOrigin();
btMatrix3x3 rotation = transform.getBasis();
for (int32_t i = 0; i < numRows; ++i) {
int32_t maxJ = numColumns;
btScalar offsetX = -(btScalar)((numColumns - 1) / 2) * stepX;
if (i%2 == 1) {
// odd rows have one less point and start a halfStep closer
maxJ -= 1;
offsetX += 0.5f * stepX;
}
for (int32_t j = 0; j < maxJ; ++j) {
btVector3 localRayEnd(offsetX + (btScalar)(j) * stepX, divisionLine + (btScalar)(i) * stepY, 0.0f);
btVector3 localRayStart = localRayEnd - reach;
MeOnlyResultCallback result(_rigidBody);
world->rayTest(position + rotation * localRayStart, position + rotation * localRayEnd, result);
if (result.m_closestHitFraction < 1.0f) {
_topPoints.push_back(localRayStart + result.m_closestHitFraction * reach);
}
}
}
}
{ // bottom points
_bottomPoints.clear();
_bottomPoints.reserve(numRows * numColumns);
btScalar stepY = (_maxStepHeight - 2.0f * slop) / (btScalar)(numRows - 1);
btScalar stepX = 2.0f * (_radius - slop) / (btScalar)(numColumns - 1);
btTransform transform = _rigidBody->getWorldTransform();
btVector3 position = transform.getOrigin();
btMatrix3x3 rotation = transform.getBasis();
for (int32_t i = 0; i < numRows; ++i) {
int32_t maxJ = numColumns;
btScalar offsetX = -(btScalar)((numColumns - 1) / 2) * stepX;
if (i%2 == 1) {
// odd rows have one less point and start a halfStep closer
maxJ -= 1;
offsetX += 0.5f * stepX;
}
for (int32_t j = 0; j < maxJ; ++j) {
btVector3 localRayEnd(offsetX + (btScalar)(j) * stepX, (divisionLine - slop) - (btScalar)(i) * stepY, 0.0f);
btVector3 localRayStart = localRayEnd - reach;
MeOnlyResultCallback result(_rigidBody);
world->rayTest(position + rotation * localRayStart, position + rotation * localRayEnd, result);
if (result.m_closestHitFraction < 1.0f) {
_bottomPoints.push_back(localRayStart + result.m_closestHitFraction * reach);
}
}
}
}
}