overte/interface/src/MetavoxelSystem.cpp
2014-04-09 09:35:42 -07:00

480 lines
18 KiB
C++

//
// MetavoxelSystem.cpp
// interface/src
//
// Created by Andrzej Kapolka on 12/10/13.
// Copyright 2013 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include <QMutexLocker>
#include <QtDebug>
#include <glm/gtx/transform.hpp>
#include <SharedUtil.h>
#include <MetavoxelUtil.h>
#include <ScriptCache.h>
#include "Application.h"
#include "MetavoxelSystem.h"
#include "renderer/Model.h"
REGISTER_META_OBJECT(SphereRenderer)
REGISTER_META_OBJECT(StaticModelRenderer)
ProgramObject MetavoxelSystem::_program;
int MetavoxelSystem::_pointScaleLocation;
MetavoxelSystem::MetavoxelSystem() :
_simulateVisitor(_points),
_buffer(QOpenGLBuffer::VertexBuffer) {
}
void MetavoxelSystem::init() {
if (!_program.isLinked()) {
_program.addShaderFromSourceFile(QGLShader::Vertex, Application::resourcesPath() + "shaders/metavoxel_point.vert");
_program.link();
_pointScaleLocation = _program.uniformLocation("pointScale");
}
_buffer.setUsagePattern(QOpenGLBuffer::DynamicDraw);
_buffer.create();
connect(NodeList::getInstance(), SIGNAL(nodeAdded(SharedNodePointer)), SLOT(maybeAttachClient(const SharedNodePointer&)));
}
SharedObjectPointer MetavoxelSystem::findFirstRaySpannerIntersection(
const glm::vec3& origin, const glm::vec3& direction, const AttributePointer& attribute, float& distance) {
SharedObjectPointer closestSpanner;
float closestDistance = FLT_MAX;
foreach (const SharedNodePointer& node, NodeList::getInstance()->getNodeHash()) {
if (node->getType() == NodeType::MetavoxelServer) {
QMutexLocker locker(&node->getMutex());
MetavoxelClient* client = static_cast<MetavoxelClient*>(node->getLinkedData());
if (client) {
float clientDistance;
SharedObjectPointer clientSpanner = client->getData().findFirstRaySpannerIntersection(
origin, direction, attribute, clientDistance);
if (clientSpanner && clientDistance < closestDistance) {
closestSpanner = clientSpanner;
closestDistance = clientDistance;
}
}
}
}
if (closestSpanner) {
distance = closestDistance;
}
return closestSpanner;
}
void MetavoxelSystem::applyEdit(const MetavoxelEditMessage& edit, bool reliable) {
foreach (const SharedNodePointer& node, NodeList::getInstance()->getNodeHash()) {
if (node->getType() == NodeType::MetavoxelServer) {
QMutexLocker locker(&node->getMutex());
MetavoxelClient* client = static_cast<MetavoxelClient*>(node->getLinkedData());
if (client) {
client->applyEdit(edit, reliable);
}
}
}
}
void MetavoxelSystem::simulate(float deltaTime) {
// simulate the clients
_points.clear();
_simulateVisitor.setDeltaTime(deltaTime);
_simulateVisitor.setOrder(-Application::getInstance()->getViewFrustum()->getDirection());
foreach (const SharedNodePointer& node, NodeList::getInstance()->getNodeHash()) {
if (node->getType() == NodeType::MetavoxelServer) {
QMutexLocker locker(&node->getMutex());
MetavoxelClient* client = static_cast<MetavoxelClient*>(node->getLinkedData());
if (client) {
client->simulate(deltaTime);
client->guide(_simulateVisitor);
}
}
}
_buffer.bind();
int bytes = _points.size() * sizeof(Point);
if (_buffer.size() < bytes) {
_buffer.allocate(_points.constData(), bytes);
} else {
_buffer.write(0, _points.constData(), bytes);
}
_buffer.release();
}
void MetavoxelSystem::render() {
int viewport[4];
glGetIntegerv(GL_VIEWPORT, viewport);
const int VIEWPORT_WIDTH_INDEX = 2;
const int VIEWPORT_HEIGHT_INDEX = 3;
float viewportWidth = viewport[VIEWPORT_WIDTH_INDEX];
float viewportHeight = viewport[VIEWPORT_HEIGHT_INDEX];
float viewportDiagonal = sqrtf(viewportWidth*viewportWidth + viewportHeight*viewportHeight);
float worldDiagonal = glm::distance(Application::getInstance()->getViewFrustum()->getNearBottomLeft(),
Application::getInstance()->getViewFrustum()->getNearTopRight());
_program.bind();
_program.setUniformValue(_pointScaleLocation, viewportDiagonal *
Application::getInstance()->getViewFrustum()->getNearClip() / worldDiagonal);
_buffer.bind();
Point* pt = 0;
glVertexPointer(4, GL_FLOAT, sizeof(Point), &pt->vertex);
glColorPointer(4, GL_UNSIGNED_BYTE, sizeof(Point), &pt->color);
glNormalPointer(GL_BYTE, sizeof(Point), &pt->normal);
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_COLOR_ARRAY);
glEnableClientState(GL_NORMAL_ARRAY);
glEnable(GL_VERTEX_PROGRAM_POINT_SIZE_ARB);
glDrawArrays(GL_POINTS, 0, _points.size());
glDisable(GL_VERTEX_PROGRAM_POINT_SIZE_ARB);
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_COLOR_ARRAY);
glDisableClientState(GL_NORMAL_ARRAY);
_buffer.release();
_program.release();
foreach (const SharedNodePointer& node, NodeList::getInstance()->getNodeHash()) {
if (node->getType() == NodeType::MetavoxelServer) {
QMutexLocker locker(&node->getMutex());
MetavoxelClient* client = static_cast<MetavoxelClient*>(node->getLinkedData());
if (client) {
client->guide(_renderVisitor);
}
}
}
}
void MetavoxelSystem::maybeAttachClient(const SharedNodePointer& node) {
if (node->getType() == NodeType::MetavoxelServer) {
QMutexLocker locker(&node->getMutex());
node->setLinkedData(new MetavoxelClient(NodeList::getInstance()->nodeWithUUID(node->getUUID())));
}
}
MetavoxelSystem::SimulateVisitor::SimulateVisitor(QVector<Point>& points) :
SpannerVisitor(QVector<AttributePointer>() << AttributeRegistry::getInstance()->getSpannersAttribute(),
QVector<AttributePointer>(), QVector<AttributePointer>() << AttributeRegistry::getInstance()->getColorAttribute() <<
AttributeRegistry::getInstance()->getNormalAttribute() <<
AttributeRegistry::getInstance()->getSpannerColorAttribute() <<
AttributeRegistry::getInstance()->getSpannerNormalAttribute()),
_points(points) {
}
bool MetavoxelSystem::SimulateVisitor::visit(Spanner* spanner, const glm::vec3& clipMinimum, float clipSize) {
spanner->getRenderer()->simulate(_deltaTime);
return true;
}
int MetavoxelSystem::SimulateVisitor::visit(MetavoxelInfo& info) {
SpannerVisitor::visit(info);
if (!info.isLeaf) {
return _order;
}
QRgb color = info.inputValues.at(0).getInlineValue<QRgb>();
QRgb normal = info.inputValues.at(1).getInlineValue<QRgb>();
quint8 alpha = qAlpha(color);
if (!info.isLODLeaf) {
if (alpha > 0) {
Point point = { glm::vec4(info.minimum + glm::vec3(info.size, info.size, info.size) * 0.5f, info.size),
{ quint8(qRed(color)), quint8(qGreen(color)), quint8(qBlue(color)), alpha },
{ quint8(qRed(normal)), quint8(qGreen(normal)), quint8(qBlue(normal)) } };
_points.append(point);
}
} else {
QRgb spannerColor = info.inputValues.at(2).getInlineValue<QRgb>();
QRgb spannerNormal = info.inputValues.at(3).getInlineValue<QRgb>();
quint8 spannerAlpha = qAlpha(spannerColor);
if (spannerAlpha > 0) {
if (alpha > 0) {
Point point = { glm::vec4(info.minimum + glm::vec3(info.size, info.size, info.size) * 0.5f, info.size),
{ quint8(qRed(spannerColor)), quint8(qGreen(spannerColor)), quint8(qBlue(spannerColor)), spannerAlpha },
{ quint8(qRed(spannerNormal)), quint8(qGreen(spannerNormal)), quint8(qBlue(spannerNormal)) } };
_points.append(point);
} else {
Point point = { glm::vec4(info.minimum + glm::vec3(info.size, info.size, info.size) * 0.5f, info.size),
{ quint8(qRed(spannerColor)), quint8(qGreen(spannerColor)), quint8(qBlue(spannerColor)), spannerAlpha },
{ quint8(qRed(spannerNormal)), quint8(qGreen(spannerNormal)), quint8(qBlue(spannerNormal)) } };
_points.append(point);
}
} else if (alpha > 0) {
Point point = { glm::vec4(info.minimum + glm::vec3(info.size, info.size, info.size) * 0.5f, info.size),
{ quint8(qRed(color)), quint8(qGreen(color)), quint8(qBlue(color)), alpha },
{ quint8(qRed(normal)), quint8(qGreen(normal)), quint8(qBlue(normal)) } };
_points.append(point);
}
}
return STOP_RECURSION;
}
MetavoxelSystem::RenderVisitor::RenderVisitor() :
SpannerVisitor(QVector<AttributePointer>() << AttributeRegistry::getInstance()->getSpannersAttribute(),
QVector<AttributePointer>() << AttributeRegistry::getInstance()->getSpannerMaskAttribute()) {
}
bool MetavoxelSystem::RenderVisitor::visit(Spanner* spanner, const glm::vec3& clipMinimum, float clipSize) {
spanner->getRenderer()->render(1.0f, SpannerRenderer::DEFAULT_MODE, clipMinimum, clipSize);
return true;
}
MetavoxelClient::MetavoxelClient(const SharedNodePointer& node) :
_node(node),
_sequencer(byteArrayWithPopulatedHeader(PacketTypeMetavoxelData)) {
connect(&_sequencer, SIGNAL(readyToWrite(const QByteArray&)), SLOT(sendData(const QByteArray&)));
connect(&_sequencer, SIGNAL(readyToRead(Bitstream&)), SLOT(readPacket(Bitstream&)));
connect(&_sequencer, SIGNAL(sendAcknowledged(int)), SLOT(clearSendRecordsBefore(int)));
connect(&_sequencer, SIGNAL(receiveAcknowledged(int)), SLOT(clearReceiveRecordsBefore(int)));
// insert the baseline send record
SendRecord sendRecord = { 0 };
_sendRecords.append(sendRecord);
// insert the baseline receive record
ReceiveRecord receiveRecord = { 0, _data };
_receiveRecords.append(receiveRecord);
}
MetavoxelClient::~MetavoxelClient() {
// close the session
Bitstream& out = _sequencer.startPacket();
out << QVariant::fromValue(CloseSessionMessage());
_sequencer.endPacket();
}
static MetavoxelLOD getLOD() {
const float FIXED_LOD_THRESHOLD = 0.01f;
return MetavoxelLOD(Application::getInstance()->getCamera()->getPosition(), FIXED_LOD_THRESHOLD);
}
void MetavoxelClient::guide(MetavoxelVisitor& visitor) {
visitor.setLOD(getLOD());
_data.guide(visitor);
}
void MetavoxelClient::applyEdit(const MetavoxelEditMessage& edit, bool reliable) {
if (reliable) {
_sequencer.getReliableOutputChannel()->sendMessage(QVariant::fromValue(edit));
} else {
// apply immediately to local tree
edit.apply(_data, _sequencer.getWeakSharedObjectHash());
// start sending it out
_sequencer.sendHighPriorityMessage(QVariant::fromValue(edit));
}
}
void MetavoxelClient::simulate(float deltaTime) {
Bitstream& out = _sequencer.startPacket();
ClientStateMessage state = { getLOD() };
out << QVariant::fromValue(state);
_sequencer.endPacket();
// record the send
SendRecord record = { _sequencer.getOutgoingPacketNumber(), state.lod };
_sendRecords.append(record);
}
int MetavoxelClient::parseData(const QByteArray& packet) {
// process through sequencer
QMetaObject::invokeMethod(&_sequencer, "receivedDatagram", Q_ARG(const QByteArray&, packet));
Application::getInstance()->getBandwidthMeter()->inputStream(BandwidthMeter::METAVOXELS).updateValue(packet.size());
return packet.size();
}
void MetavoxelClient::sendData(const QByteArray& data) {
NodeList::getInstance()->writeDatagram(data, _node);
Application::getInstance()->getBandwidthMeter()->outputStream(BandwidthMeter::METAVOXELS).updateValue(data.size());
}
void MetavoxelClient::readPacket(Bitstream& in) {
QVariant message;
in >> message;
handleMessage(message, in);
// record the receipt
ReceiveRecord record = { _sequencer.getIncomingPacketNumber(), _data, _sendRecords.first().lod };
_receiveRecords.append(record);
// reapply local edits
foreach (const DatagramSequencer::HighPriorityMessage& message, _sequencer.getHighPriorityMessages()) {
if (message.data.userType() == MetavoxelEditMessage::Type) {
message.data.value<MetavoxelEditMessage>().apply(_data, _sequencer.getWeakSharedObjectHash());
}
}
}
void MetavoxelClient::clearSendRecordsBefore(int index) {
_sendRecords.erase(_sendRecords.begin(), _sendRecords.begin() + index + 1);
}
void MetavoxelClient::clearReceiveRecordsBefore(int index) {
_receiveRecords.erase(_receiveRecords.begin(), _receiveRecords.begin() + index + 1);
}
void MetavoxelClient::handleMessage(const QVariant& message, Bitstream& in) {
int userType = message.userType();
if (userType == MetavoxelDeltaMessage::Type) {
_data.readDelta(_receiveRecords.first().data, _receiveRecords.first().lod, in, _sendRecords.first().lod);
} else if (userType == QMetaType::QVariantList) {
foreach (const QVariant& element, message.toList()) {
handleMessage(element, in);
}
}
}
static void enableClipPlane(GLenum plane, float x, float y, float z, float w) {
GLdouble coefficients[] = { x, y, z, w };
glClipPlane(plane, coefficients);
glEnable(plane);
}
void ClippedRenderer::render(float alpha, Mode mode, const glm::vec3& clipMinimum, float clipSize) {
if (clipSize == 0.0f) {
renderUnclipped(alpha, mode);
return;
}
enableClipPlane(GL_CLIP_PLANE0, -1.0f, 0.0f, 0.0f, clipMinimum.x + clipSize);
enableClipPlane(GL_CLIP_PLANE1, 1.0f, 0.0f, 0.0f, -clipMinimum.x);
enableClipPlane(GL_CLIP_PLANE2, 0.0f, -1.0f, 0.0f, clipMinimum.y + clipSize);
enableClipPlane(GL_CLIP_PLANE3, 0.0f, 1.0f, 0.0f, -clipMinimum.y);
enableClipPlane(GL_CLIP_PLANE4, 0.0f, 0.0f, -1.0f, clipMinimum.z + clipSize);
enableClipPlane(GL_CLIP_PLANE5, 0.0f, 0.0f, 1.0f, -clipMinimum.z);
renderUnclipped(alpha, mode);
glDisable(GL_CLIP_PLANE0);
glDisable(GL_CLIP_PLANE1);
glDisable(GL_CLIP_PLANE2);
glDisable(GL_CLIP_PLANE3);
glDisable(GL_CLIP_PLANE4);
glDisable(GL_CLIP_PLANE5);
}
SphereRenderer::SphereRenderer() {
}
void SphereRenderer::render(float alpha, Mode mode, const glm::vec3& clipMinimum, float clipSize) {
if (clipSize == 0.0f) {
renderUnclipped(alpha, mode);
return;
}
// slight performance optimization: don't render if clip bounds are entirely within sphere
Sphere* sphere = static_cast<Sphere*>(parent());
Box clipBox(clipMinimum, clipMinimum + glm::vec3(clipSize, clipSize, clipSize));
for (int i = 0; i < Box::VERTEX_COUNT; i++) {
const float CLIP_PROPORTION = 0.95f;
if (glm::distance(sphere->getTranslation(), clipBox.getVertex(i)) >= sphere->getScale() * CLIP_PROPORTION) {
ClippedRenderer::render(alpha, mode, clipMinimum, clipSize);
return;
}
}
}
void SphereRenderer::renderUnclipped(float alpha, Mode mode) {
Sphere* sphere = static_cast<Sphere*>(parent());
const QColor& color = sphere->getColor();
glColor4f(color.redF(), color.greenF(), color.blueF(), color.alphaF() * alpha);
glPushMatrix();
const glm::vec3& translation = sphere->getTranslation();
glTranslatef(translation.x, translation.y, translation.z);
glm::quat rotation = sphere->getRotation();
glm::vec3 axis = glm::axis(rotation);
glRotatef(glm::angle(rotation), axis.x, axis.y, axis.z);
glutSolidSphere(sphere->getScale(), 10, 10);
glPopMatrix();
}
StaticModelRenderer::StaticModelRenderer() :
_model(new Model(this)) {
}
void StaticModelRenderer::init(Spanner* spanner) {
_model->init();
StaticModel* staticModel = static_cast<StaticModel*>(spanner);
applyTranslation(staticModel->getTranslation());
applyRotation(staticModel->getRotation());
applyScale(staticModel->getScale());
applyURL(staticModel->getURL());
connect(spanner, SIGNAL(translationChanged(const glm::vec3&)), SLOT(applyTranslation(const glm::vec3&)));
connect(spanner, SIGNAL(rotationChanged(const glm::quat&)), SLOT(applyRotation(const glm::quat&)));
connect(spanner, SIGNAL(scaleChanged(float)), SLOT(applyScale(float)));
connect(spanner, SIGNAL(urlChanged(const QUrl&)), SLOT(applyURL(const QUrl&)));
}
void StaticModelRenderer::simulate(float deltaTime) {
// update the bounds
Box bounds;
if (_model->isActive()) {
const Extents& extents = _model->getGeometry()->getFBXGeometry().meshExtents;
bounds = Box(extents.minimum, extents.maximum);
}
static_cast<StaticModel*>(parent())->setBounds(glm::translate(_model->getTranslation()) *
glm::mat4_cast(_model->getRotation()) * glm::scale(_model->getScale()) * bounds);
_model->simulate(deltaTime);
}
void StaticModelRenderer::renderUnclipped(float alpha, Mode mode) {
switch (mode) {
case DIFFUSE_MODE:
_model->render(alpha, Model::DIFFUSE_RENDER_MODE);
break;
case NORMAL_MODE:
_model->render(alpha, Model::NORMAL_RENDER_MODE);
break;
default:
_model->render(alpha);
break;
}
_model->render(alpha);
}
bool StaticModelRenderer::findRayIntersection(const glm::vec3& origin, const glm::vec3& direction,
const glm::vec3& clipMinimum, float clipSize, float& distance) const {
return _model->findRayIntersection(origin, direction, distance);
}
void StaticModelRenderer::applyTranslation(const glm::vec3& translation) {
_model->setTranslation(translation);
}
void StaticModelRenderer::applyRotation(const glm::quat& rotation) {
_model->setRotation(rotation);
}
void StaticModelRenderer::applyScale(float scale) {
const float SCALE_MULTIPLIER = 0.0006f;
_model->setScale(glm::vec3(scale, scale, scale) * SCALE_MULTIPLIER);
}
void StaticModelRenderer::applyURL(const QUrl& url) {
_model->setURL(url);
}