overte/interface/src/Util.cpp
samcake 9f0936de53 Improve the TextRenderer::draw(), first step
- Introduce a managed Buffer for data to be used on the GPU. THis is the first type of resource (second will be texture) that we plan to    use in the graphics engine in the long term. this is an api agnostic replacement to QGLBuggerObject
  It's in the new file gpu/Resource.h(.cpp)

- Add two gpu::Buffers in the TextRenderer that collect all the glyph vertices (coords + texcoords + color) during the for loop on the string characters of the TextRenderer::draw(). Right now the text glyphs are then drawn in one draw call (and not one per character) at the end of the function.

THe step 2 plan is to keep on collecting all the glyphs from all the TextRenderer::Draw() issued during one frame and to draw all of them in a single drawcall. We decided to split the task in 2 so it's easier to review.
2014-10-09 10:17:50 -07:00

556 lines
18 KiB
C++

//
// Util.cpp
// interface/src
//
// Created by Philip Rosedale on 8/24/12.
// Copyright 2012 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include <iostream>
#include <cstring>
#include <time.h>
#include <math.h>
#include <glm/glm.hpp>
#include <glm/gtc/noise.hpp>
#include <glm/gtx/quaternion.hpp>
#include <glm/detail/func_common.hpp>
#include <SharedUtil.h>
#include <QThread>
#include "InterfaceConfig.h"
#include "ui/TextRenderer.h"
#include "VoxelConstants.h"
#include "world.h"
#include "Application.h"
#include "Util.h"
using namespace std;
// no clue which versions are affected...
#define WORKAROUND_BROKEN_GLUT_STROKES
// see http://www.opengl.org/resources/libraries/glut/spec3/node78.html
void eulerToOrthonormals(glm::vec3 * angles, glm::vec3 * front, glm::vec3 * right, glm::vec3 * up) {
//
// Converts from three euler angles to the associated orthonormal vectors
//
// Angles contains (pitch, yaw, roll) in radians
//
// First, create the quaternion associated with these euler angles
glm::quat q(glm::vec3(angles->x, -(angles->y), angles->z));
// Next, create a rotation matrix from that quaternion
glm::mat4 rotation;
rotation = glm::mat4_cast(q);
// Transform the original vectors by the rotation matrix to get the new vectors
glm::vec4 qup(0,1,0,0);
glm::vec4 qright(-1,0,0,0);
glm::vec4 qfront(0,0,1,0);
glm::vec4 upNew = qup*rotation;
glm::vec4 rightNew = qright*rotation;
glm::vec4 frontNew = qfront*rotation;
// Copy the answers to output vectors
up->x = upNew.x; up->y = upNew.y; up->z = upNew.z;
right->x = rightNew.x; right->y = rightNew.y; right->z = rightNew.z;
front->x = frontNew.x; front->y = frontNew.y; front->z = frontNew.z;
}
void printVector(glm::vec3 vec) {
qDebug("%4.2f, %4.2f, %4.2f", vec.x, vec.y, vec.z);
}
// Return the azimuth angle (in radians) between two points.
float azimuth_to(glm::vec3 head_pos, glm::vec3 source_pos) {
return atan2(head_pos.x - source_pos.x, head_pos.z - source_pos.z);
}
// Return the angle (in radians) between the head and an object in the scene.
// The value is zero if you are looking right at it.
// The angle is negative if the object is to your right.
float angle_to(glm::vec3 head_pos, glm::vec3 source_pos, float render_yaw, float head_yaw) {
return atan2(head_pos.x - source_pos.x, head_pos.z - source_pos.z) + render_yaw + head_yaw;
}
// Draw a 3D vector floating in space
void drawVector(glm::vec3 * vector) {
glDisable(GL_LIGHTING);
glEnable(GL_POINT_SMOOTH);
glPointSize(3.0);
glLineWidth(2.0);
// Draw axes
glBegin(GL_LINES);
glColor3f(1,0,0);
glVertex3f(0,0,0);
glVertex3f(1,0,0);
glColor3f(0,1,0);
glVertex3f(0,0,0);
glVertex3f(0, 1, 0);
glColor3f(0,0,1);
glVertex3f(0,0,0);
glVertex3f(0, 0, 1);
glEnd();
// Draw the vector itself
glBegin(GL_LINES);
glColor3f(1,1,1);
glVertex3f(0,0,0);
glVertex3f(vector->x, vector->y, vector->z);
glEnd();
// Draw spheres for magnitude
glPushMatrix();
glColor3f(1,0,0);
glTranslatef(vector->x, 0, 0);
Application::getInstance()->getGeometryCache()->renderSphere(0.02f, 10, 10);
glColor3f(0,1,0);
glTranslatef(-vector->x, vector->y, 0);
Application::getInstance()->getGeometryCache()->renderSphere(0.02f, 10, 10);
glColor3f(0,0,1);
glTranslatef(0, -vector->y, vector->z);
Application::getInstance()->getGeometryCache()->renderSphere(0.02f, 10, 10);
glPopMatrix();
}
void renderWorldBox() {
// Show edge of world
float red[] = {1, 0, 0};
float green[] = {0, 1, 0};
float blue[] = {0, 0, 1};
float gray[] = {0.5, 0.5, 0.5};
glDisable(GL_LIGHTING);
glLineWidth(1.0);
glBegin(GL_LINES);
glColor3fv(red);
glVertex3f(0, 0, 0);
glVertex3f(TREE_SCALE, 0, 0);
glColor3fv(green);
glVertex3f(0, 0, 0);
glVertex3f(0, TREE_SCALE, 0);
glColor3fv(blue);
glVertex3f(0, 0, 0);
glVertex3f(0, 0, TREE_SCALE);
glColor3fv(gray);
glVertex3f(0, 0, TREE_SCALE);
glVertex3f(TREE_SCALE, 0, TREE_SCALE);
glVertex3f(TREE_SCALE, 0, TREE_SCALE);
glVertex3f(TREE_SCALE, 0, 0);
glEnd();
// Draw meter markers along the 3 axis to help with measuring things
const float MARKER_DISTANCE = 1.f;
const float MARKER_RADIUS = 0.05f;
glEnable(GL_LIGHTING);
glPushMatrix();
glTranslatef(MARKER_DISTANCE, 0, 0);
glColor3fv(red);
Application::getInstance()->getGeometryCache()->renderSphere(MARKER_RADIUS, 10, 10);
glPopMatrix();
glPushMatrix();
glTranslatef(0, MARKER_DISTANCE, 0);
glColor3fv(green);
Application::getInstance()->getGeometryCache()->renderSphere(MARKER_RADIUS, 10, 10);
glPopMatrix();
glPushMatrix();
glTranslatef(0, 0, MARKER_DISTANCE);
glColor3fv(blue);
Application::getInstance()->getGeometryCache()->renderSphere(MARKER_RADIUS, 10, 10);
glPopMatrix();
glPushMatrix();
glColor3fv(gray);
glTranslatef(MARKER_DISTANCE, 0, MARKER_DISTANCE);
Application::getInstance()->getGeometryCache()->renderSphere(MARKER_RADIUS, 10, 10);
glPopMatrix();
}
// Return a random vector of average length 1
const glm::vec3 randVector() {
return glm::vec3(randFloat() - 0.5f, randFloat() - 0.5f, randFloat() - 0.5f) * 2.f;
}
static TextRenderer* textRenderer(int mono) {
static TextRenderer* monoRenderer = TextRenderer::getInstance(MONO_FONT_FAMILY);
static TextRenderer* proportionalRenderer = TextRenderer::getInstance(SANS_FONT_FAMILY,
-1, -1, false, TextRenderer::SHADOW_EFFECT);
static TextRenderer* inconsolataRenderer = TextRenderer::getInstance(INCONSOLATA_FONT_FAMILY, -1, QFont::Bold, false);
switch (mono) {
case 1:
return monoRenderer;
case 2:
return inconsolataRenderer;
case 0:
default:
return proportionalRenderer;
}
}
int widthText(float scale, int mono, char const* string) {
return textRenderer(mono)->computeWidth(string) * (scale / 0.10);
}
float widthChar(float scale, int mono, char ch) {
return textRenderer(mono)->computeWidth(ch) * (scale / 0.10);
}
void drawText(int x, int y, float scale, float radians, int mono,
char const* string, const float* color) {
//
// Draws text on screen as stroked so it can be resized
//
glPushMatrix();
glTranslatef(static_cast<float>(x), static_cast<float>(y), 0.0f);
glColor3fv(color);
glRotated(double(radians * DEGREES_PER_RADIAN), 0.0, 0.0, 1.0);
glScalef(scale / 0.1f, scale / 0.1f, 1.f);
textRenderer(mono)->draw(0, 0, string);
glPopMatrix();
}
void drawvec3(int x, int y, float scale, float radians, float thick, int mono, glm::vec3 vec, float r, float g, float b) {
//
// Draws vec3 on screen as stroked so it can be resized
//
char vectext[20];
sprintf(vectext,"%3.1f,%3.1f,%3.1f", vec.x, vec.y, vec.z);
int len, i;
glPushMatrix();
glTranslatef(static_cast<float>(x), static_cast<float>(y), 0);
glColor3f(r,g,b);
glRotated(180.0 + double(radians * DEGREES_PER_RADIAN), 0.0, 0.0, 1.0);
glRotated(180.0, 0.0, 1.0, 0.0);
glLineWidth(thick);
glScalef(scale, scale, 1.f);
len = (int) strlen(vectext);
for (i = 0; i < len; i++) {
if (!mono) glutStrokeCharacter(GLUT_STROKE_ROMAN, int(vectext[i]));
else glutStrokeCharacter(GLUT_STROKE_MONO_ROMAN, int(vectext[i]));
}
glPopMatrix();
}
void renderCollisionOverlay(int width, int height, float magnitude, float red, float blue, float green) {
const float MIN_VISIBLE_COLLISION = 0.01f;
if (magnitude > MIN_VISIBLE_COLLISION) {
glColor4f(red, blue, green, magnitude);
glBegin(GL_QUADS);
glVertex2f(0, 0);
glVertex2d(width, 0);
glVertex2d(width, height);
glVertex2d(0, height);
glEnd();
}
}
void renderSphereOutline(glm::vec3 position, float radius, int numSides, glm::vec3 cameraPosition) {
glm::vec3 vectorToPosition(glm::normalize(position - cameraPosition));
glm::vec3 right = glm::cross(vectorToPosition, glm::vec3(0.0f, 1.0f, 0.0f));
glm::vec3 up = glm::cross(right, vectorToPosition);
glBegin(GL_LINE_STRIP);
for (int i=0; i<numSides+1; i++) {
float r = ((float)i / (float)numSides) * TWO_PI;
float s = radius * sinf(r);
float c = radius * cosf(r);
glVertex3f
(
position.x + right.x * s + up.x * c,
position.y + right.y * s + up.y * c,
position.z + right.z * s + up.z * c
);
}
glEnd();
}
void renderCircle(glm::vec3 position, float radius, glm::vec3 surfaceNormal, int numSides) {
glm::vec3 perp1 = glm::vec3(surfaceNormal.y, surfaceNormal.z, surfaceNormal.x);
glm::vec3 perp2 = glm::vec3(surfaceNormal.z, surfaceNormal.x, surfaceNormal.y);
glBegin(GL_LINE_STRIP);
for (int i=0; i<numSides+1; i++) {
float r = ((float)i / (float)numSides) * TWO_PI;
float s = radius * sinf(r);
float c = radius * cosf(r);
glVertex3f
(
position.x + perp1.x * s + perp2.x * c,
position.y + perp1.y * s + perp2.y * c,
position.z + perp1.z * s + perp2.z * c
);
}
glEnd();
}
void renderBevelCornersRect(int x, int y, int width, int height, int bevelDistance) {
glBegin(GL_POLYGON);
// left side
glVertex2f(x, y + bevelDistance);
glVertex2f(x, y + height - bevelDistance);
// top side
glVertex2f(x + bevelDistance, y + height);
glVertex2f(x + width - bevelDistance, y + height);
// right
glVertex2f(x + width, y + height - bevelDistance);
glVertex2f(x + width, y + bevelDistance);
// bottom
glVertex2f(x + width - bevelDistance, y);
glVertex2f(x +bevelDistance, y);
glEnd();
}
void renderRoundedCornersRect(int x, int y, int width, int height, int radius, int numPointsCorner) {
#define MAX_POINTS_CORNER 50
// At least "2" is needed
if (numPointsCorner <= 1) {
return;
}
if (numPointsCorner > MAX_POINTS_CORNER) {
numPointsCorner = MAX_POINTS_CORNER;
}
// Precompute sin and cos for [0, PI/2) for the number of points (numPointCorner)
double radiusTimesSin[MAX_POINTS_CORNER];
double radiusTimesCos[MAX_POINTS_CORNER];
int i = 0;
for (int i = 0; i < numPointsCorner; i++) {
double t = (double)i * (double)PI_OVER_TWO / (double)(numPointsCorner - 1);
radiusTimesSin[i] = radius * sin(t);
radiusTimesCos[i] = radius * cos(t);
}
glm::dvec2 cornerCenter;
glBegin(GL_POINTS);
// Top left corner
cornerCenter = glm::vec2(x + radius, y + height - radius);
for (i = 0; i < numPointsCorner; i++) {
glVertex2d(cornerCenter.x - radiusTimesCos[i], cornerCenter.y + radiusTimesSin[i]);
}
// Top rigth corner
cornerCenter = glm::vec2(x + width - radius, y + height - radius);
for (i = 0; i < numPointsCorner; i++) {
glVertex2d(cornerCenter.x + radiusTimesSin[i], cornerCenter.y + radiusTimesCos[i]);
}
// Bottom right
cornerCenter = glm::vec2(x + width - radius, y + radius);
for (i = 0; i < numPointsCorner; i++) {
glVertex2d(cornerCenter.x + radiusTimesCos[i], cornerCenter.y - radiusTimesSin[i]);
}
// Bottom left
cornerCenter = glm::vec2(x + radius, y + radius);
for (i = 0; i < numPointsCorner; i++) {
glVertex2d(cornerCenter.x - radiusTimesSin[i], cornerCenter.y - radiusTimesCos[i]);
}
glEnd();
}
void renderOrientationDirections(glm::vec3 position, const glm::quat& orientation, float size) {
glm::vec3 pRight = position + orientation * IDENTITY_RIGHT * size;
glm::vec3 pUp = position + orientation * IDENTITY_UP * size;
glm::vec3 pFront = position + orientation * IDENTITY_FRONT * size;
glColor3f(1.0f, 0.0f, 0.0f);
glBegin(GL_LINE_STRIP);
glVertex3f(position.x, position.y, position.z);
glVertex3f(pRight.x, pRight.y, pRight.z);
glEnd();
glColor3f(0.0f, 1.0f, 0.0f);
glBegin(GL_LINE_STRIP);
glVertex3f(position.x, position.y, position.z);
glVertex3f(pUp.x, pUp.y, pUp.z);
glEnd();
glColor3f(0.0f, 0.0f, 1.0f);
glBegin(GL_LINE_STRIP);
glVertex3f(position.x, position.y, position.z);
glVertex3f(pFront.x, pFront.y, pFront.z);
glEnd();
}
bool closeEnoughForGovernmentWork(float a, float b) {
float distance = std::abs(a-b);
//qDebug("closeEnoughForGovernmentWork() a=%1.10f b=%1.10f distance=%1.10f\n",a,b,distance);
return (distance < 0.00001f);
}
// Do some basic timing tests and report the results
void runTimingTests() {
// How long does it take to make a call to get the time?
const int numTests = 1000000;
int* iResults = (int*)malloc(sizeof(int) * numTests);
float fTest = 1.0;
float* fResults = (float*)malloc(sizeof(float) * numTests);
QElapsedTimer startTime;
startTime.start();
float elapsedUsecs;
float NSEC_TO_USEC = 1.0f / 1000.0f;
elapsedUsecs = (float)startTime.nsecsElapsed() * NSEC_TO_USEC;
qDebug("QElapsedTimer::nsecElapsed() usecs: %f", elapsedUsecs);
// Test sleep functions for accuracy
startTime.start();
QThread::msleep(1);
elapsedUsecs = (float)startTime.nsecsElapsed() * NSEC_TO_USEC;
qDebug("QThread::msleep(1) ms: %f", elapsedUsecs / 1000.0f);
startTime.start();
QThread::sleep(1);
elapsedUsecs = (float)startTime.nsecsElapsed() * NSEC_TO_USEC;
qDebug("QThread::sleep(1) ms: %f", elapsedUsecs / 1000.0f);
startTime.start();
usleep(1);
elapsedUsecs = (float)startTime.nsecsElapsed() * NSEC_TO_USEC;
qDebug("usleep(1) ms: %f", elapsedUsecs / 1000.0f);
startTime.start();
usleep(10);
elapsedUsecs = (float)startTime.nsecsElapsed() * NSEC_TO_USEC;
qDebug("usleep(10) ms: %f", elapsedUsecs / 1000.0f);
startTime.start();
usleep(100);
elapsedUsecs = (float)startTime.nsecsElapsed() * NSEC_TO_USEC;
qDebug("usleep(100) ms: %f", elapsedUsecs / 1000.0f);
startTime.start();
usleep(1000);
elapsedUsecs = (float)startTime.nsecsElapsed() * NSEC_TO_USEC;
qDebug("usleep(1000) ms: %f", elapsedUsecs / 1000.0f);
startTime.start();
usleep(15000);
elapsedUsecs = (float)startTime.nsecsElapsed() * NSEC_TO_USEC;
qDebug("usleep(15000) ms: %f", elapsedUsecs / 1000.0f);
// Random number generation
startTime.start();
for (int i = 0; i < numTests; i++) {
iResults[i] = rand();
}
elapsedUsecs = (float)startTime.nsecsElapsed() * NSEC_TO_USEC;
qDebug("rand() stored in array usecs: %f, first result:%d", elapsedUsecs / (float) numTests, iResults[0]);
// Random number generation using randFloat()
startTime.start();
for (int i = 0; i < numTests; i++) {
fResults[i] = randFloat();
}
elapsedUsecs = (float)startTime.nsecsElapsed() * NSEC_TO_USEC;
qDebug("randFloat() stored in array usecs: %f, first result: %f", elapsedUsecs / (float) numTests, fResults[0]);
free(iResults);
free(fResults);
// PowF function
fTest = 1145323.2342f;
startTime.start();
for (int i = 0; i < numTests; i++) {
fTest = powf(fTest, 0.5f);
}
elapsedUsecs = (float)startTime.nsecsElapsed() * NSEC_TO_USEC;
qDebug("powf(f, 0.5) usecs: %f", elapsedUsecs / (float) numTests);
// Vector Math
float distance;
glm::vec3 pointA(randVector()), pointB(randVector());
startTime.start();
for (int i = 0; i < numTests; i++) {
//glm::vec3 temp = pointA - pointB;
//float distanceSquared = glm::dot(temp, temp);
distance = glm::distance(pointA, pointB);
}
elapsedUsecs = (float)startTime.nsecsElapsed() * NSEC_TO_USEC;
qDebug("vector math usecs: %f [%f usecs total for %d tests], last result:%f",
elapsedUsecs / (float) numTests, elapsedUsecs, numTests, distance);
// Vec3 test
glm::vec3 vecA(randVector()), vecB(randVector());
float result;
startTime.start();
for (int i = 0; i < numTests; i++) {
glm::vec3 temp = vecA-vecB;
result = glm::dot(temp,temp);
}
elapsedUsecs = (float)startTime.nsecsElapsed() * NSEC_TO_USEC;
qDebug("vec3 assign and dot() usecs: %f, last result:%f", elapsedUsecs / (float) numTests, result);
}
float loadSetting(QSettings* settings, const char* name, float defaultValue) {
float value = settings->value(name, defaultValue).toFloat();
if (glm::isnan(value)) {
value = defaultValue;
}
return value;
}
bool rayIntersectsSphere(const glm::vec3& rayStarting, const glm::vec3& rayNormalizedDirection,
const glm::vec3& sphereCenter, float sphereRadius, float& distance) {
glm::vec3 relativeOrigin = rayStarting - sphereCenter;
// compute the b, c terms of the quadratic equation (a is dot(direction, direction), which is one)
float b = 2.0f * glm::dot(rayNormalizedDirection, relativeOrigin);
float c = glm::dot(relativeOrigin, relativeOrigin) - sphereRadius * sphereRadius;
// compute the radicand of the quadratic. if less than zero, there's no intersection
float radicand = b * b - 4.0f * c;
if (radicand < 0.0f) {
return false;
}
// compute the first solution of the quadratic
float root = sqrtf(radicand);
float firstSolution = -b - root;
if (firstSolution > 0.0f) {
distance = firstSolution / 2.0f;
return true; // origin is outside the sphere
}
// now try the second solution
float secondSolution = -b + root;
if (secondSolution > 0.0f) {
distance = 0.0f;
return true; // origin is inside the sphere
}
return false;
}
bool pointInSphere(glm::vec3& point, glm::vec3& sphereCenter, double sphereRadius) {
glm::vec3 diff = point - sphereCenter;
double mag = sqrt(glm::dot(diff, diff));
if (mag <= sphereRadius) {
return true;
}
return false;
}