overte/libraries/entities-renderer/src/RenderableMaterialEntityItem.cpp
SamGondelman 2d754edf74 CR
2018-02-15 15:48:41 -08:00

269 lines
9.4 KiB
C++

//
// Created by Sam Gondelman on 1/18/2018
// Copyright 2018 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include "RenderableMaterialEntityItem.h"
#include "RenderPipelines.h"
using namespace render;
using namespace render::entities;
bool MaterialEntityRenderer::needsRenderUpdateFromTypedEntity(const TypedEntityPointer& entity) const {
if (entity->getMaterial() != _drawMaterial) {
return true;
}
if (entity->getParentID() != _parentID || entity->getClientOnly() != _clientOnly || entity->getOwningAvatarID() != _owningAvatarID) {
return true;
}
if (entity->getMaterialMappingPos() != _materialMappingPos || entity->getMaterialMappingScale() != _materialMappingScale || entity->getMaterialMappingRot() != _materialMappingRot) {
return true;
}
return false;
}
void MaterialEntityRenderer::doRenderUpdateSynchronousTyped(const ScenePointer& scene, Transaction& transaction, const TypedEntityPointer& entity) {
withWriteLock([&] {
_drawMaterial = entity->getMaterial();
_parentID = entity->getParentID();
_clientOnly = entity->getClientOnly();
_owningAvatarID = entity->getOwningAvatarID();
_materialMappingPos = entity->getMaterialMappingPos();
_materialMappingScale = entity->getMaterialMappingScale();
_materialMappingRot = entity->getMaterialMappingRot();
_renderTransform = getModelTransform();
const float MATERIAL_ENTITY_SCALE = 0.5f;
_renderTransform.postScale(MATERIAL_ENTITY_SCALE);
_renderTransform.postScale(ENTITY_ITEM_DEFAULT_DIMENSIONS);
});
}
ItemKey MaterialEntityRenderer::getKey() {
ItemKey::Builder builder;
builder.withTypeShape().withTagBits(render::ItemKey::TAG_BITS_0 | render::ItemKey::TAG_BITS_1);
if (!_visible) {
builder.withInvisible();
}
if (_drawMaterial) {
auto matKey = _drawMaterial->getKey();
if (matKey.isTranslucent()) {
builder.withTransparent();
}
}
return builder.build();
}
ShapeKey MaterialEntityRenderer::getShapeKey() {
graphics::MaterialKey drawMaterialKey;
if (_drawMaterial) {
drawMaterialKey = _drawMaterial->getKey();
}
bool isTranslucent = drawMaterialKey.isTranslucent();
bool hasTangents = drawMaterialKey.isNormalMap();
bool hasSpecular = drawMaterialKey.isMetallicMap();
bool hasLightmap = drawMaterialKey.isLightmapMap();
bool isUnlit = drawMaterialKey.isUnlit();
ShapeKey::Builder builder;
builder.withMaterial();
if (isTranslucent) {
builder.withTranslucent();
}
if (hasTangents) {
builder.withTangents();
}
if (hasSpecular) {
builder.withSpecular();
}
if (hasLightmap) {
builder.withLightmap();
}
if (isUnlit) {
builder.withUnlit();
}
return builder.build();
}
glm::vec3 MaterialEntityRenderer::getVertexPos(float phi, float theta) {
return glm::vec3(glm::sin(theta) * glm::cos(phi), glm::cos(theta), glm::sin(theta) * glm::sin(phi));
}
glm::vec3 MaterialEntityRenderer::getTangent(float phi, float theta) {
return glm::vec3(-glm::cos(theta) * glm::cos(phi), glm::sin(theta), -glm::cos(theta) * glm::sin(phi));
}
void MaterialEntityRenderer::addVertex(std::vector<float>& buffer, const glm::vec3& pos, const glm::vec3& tan, const glm::vec2 uv) {
buffer.push_back(pos.x); buffer.push_back(pos.y); buffer.push_back(pos.z);
buffer.push_back(tan.x); buffer.push_back(tan.y); buffer.push_back(tan.z);
buffer.push_back(uv.x); buffer.push_back(uv.y);
}
void MaterialEntityRenderer::addTriangleFan(std::vector<float>& buffer, int stack, int step) {
float v1 = ((float)stack) / STACKS;
float theta1 = v1 * (float)M_PI;
glm::vec3 tip = getVertexPos(0, theta1);
float v2 = ((float)(stack + step)) / STACKS;
float theta2 = v2 * (float)M_PI;
for (int i = 0; i < SLICES; i++) {
float u1 = ((float)i) / SLICES;
float u2 = ((float)(i + step)) / SLICES;
float phi1 = u1 * M_PI_TIMES_2;
float phi2 = u2 * M_PI_TIMES_2;
/* (flipped for negative step)
p1
/ \
/ \
/ \
p3 ------ p2
*/
glm::vec3 pos2 = getVertexPos(phi2, theta2);
glm::vec3 pos3 = getVertexPos(phi1, theta2);
glm::vec3 tan1 = getTangent(0, theta1);
glm::vec3 tan2 = getTangent(phi2, theta2);
glm::vec3 tan3 = getTangent(phi1, theta2);
glm::vec2 uv1 = glm::vec2((u1 + u2) / 2.0f, v1);
glm::vec2 uv2 = glm::vec2(u2, v2);
glm::vec2 uv3 = glm::vec2(u1, v2);
addVertex(buffer, tip, tan1, uv1);
addVertex(buffer, pos2, tan2, uv2);
addVertex(buffer, pos3, tan3, uv3);
_numVertices += 3;
}
}
int MaterialEntityRenderer::_numVertices = 0;
std::shared_ptr<gpu::Stream::Format> MaterialEntityRenderer::_streamFormat = nullptr;
std::shared_ptr<gpu::BufferStream> MaterialEntityRenderer::_stream = nullptr;
std::shared_ptr<gpu::Buffer> MaterialEntityRenderer::_verticesBuffer = nullptr;
void MaterialEntityRenderer::generateMesh() {
_streamFormat = std::make_shared<gpu::Stream::Format>();
_stream = std::make_shared<gpu::BufferStream>();
_verticesBuffer = std::make_shared<gpu::Buffer>();
const int NUM_POS_COORDS = 3;
const int NUM_TANGENT_COORDS = 3;
const int VERTEX_TANGENT_OFFSET = NUM_POS_COORDS * sizeof(float);
const int VERTEX_TEXCOORD_OFFSET = VERTEX_TANGENT_OFFSET + NUM_TANGENT_COORDS * sizeof(float);
_streamFormat->setAttribute(gpu::Stream::POSITION, 0, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::XYZ), 0);
_streamFormat->setAttribute(gpu::Stream::NORMAL, 0, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::XYZ), 0);
_streamFormat->setAttribute(gpu::Stream::TANGENT, 0, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::XYZ), VERTEX_TANGENT_OFFSET);
_streamFormat->setAttribute(gpu::Stream::TEXCOORD, 0, gpu::Element(gpu::VEC2, gpu::FLOAT, gpu::UV), VERTEX_TEXCOORD_OFFSET);
_stream->addBuffer(_verticesBuffer, 0, _streamFormat->getChannels().at(0)._stride);
std::vector<float> vertexBuffer;
// Top
addTriangleFan(vertexBuffer, 0, 1);
// Middle section
for (int j = 1; j < STACKS - 1; j++) {
float v1 = ((float)j) / STACKS;
float v2 = ((float)(j + 1)) / STACKS;
float theta1 = v1 * (float)M_PI;
float theta2 = v2 * (float)M_PI;
for (int i = 0; i < SLICES; i++) {
float u1 = ((float)i) / SLICES;
float u2 = ((float)(i + 1)) / SLICES;
float phi1 = u1 * M_PI_TIMES_2;
float phi2 = u2 * M_PI_TIMES_2;
/*
p2 ---- p3
| / |
| / |
| / |
p1 ---- p4
*/
glm::vec3 pos1 = getVertexPos(phi1, theta2);
glm::vec3 pos2 = getVertexPos(phi1, theta1);
glm::vec3 pos3 = getVertexPos(phi2, theta1);
glm::vec3 pos4 = getVertexPos(phi2, theta2);
glm::vec3 tan1 = getTangent(phi1, theta2);
glm::vec3 tan2 = getTangent(phi1, theta1);
glm::vec3 tan3 = getTangent(phi2, theta1);
glm::vec3 tan4 = getTangent(phi2, theta2);
glm::vec2 uv1 = glm::vec2(u1, v2);
glm::vec2 uv2 = glm::vec2(u1, v1);
glm::vec2 uv3 = glm::vec2(u2, v1);
glm::vec2 uv4 = glm::vec2(u2, v2);
addVertex(vertexBuffer, pos1, tan1, uv1);
addVertex(vertexBuffer, pos2, tan2, uv2);
addVertex(vertexBuffer, pos3, tan3, uv3);
addVertex(vertexBuffer, pos3, tan3, uv3);
addVertex(vertexBuffer, pos4, tan4, uv4);
addVertex(vertexBuffer, pos1, tan1, uv1);
_numVertices += 6;
}
}
// Bottom
addTriangleFan(vertexBuffer, STACKS, -1);
_verticesBuffer->append(vertexBuffer.size() * sizeof(float), (gpu::Byte*) vertexBuffer.data());
}
void MaterialEntityRenderer::doRender(RenderArgs* args) {
PerformanceTimer perfTimer("RenderableMaterialEntityItem::render");
Q_ASSERT(args->_batch);
gpu::Batch& batch = *args->_batch;
// Don't render if our parent is set or our material is null
QUuid parentID;
Transform renderTransform;
graphics::MaterialPointer drawMaterial;
Transform textureTransform;
withReadLock([&] {
parentID = _clientOnly ? _owningAvatarID : _parentID;
renderTransform = _renderTransform;
drawMaterial = _drawMaterial;
textureTransform.setTranslation(glm::vec3(_materialMappingPos, 0));
textureTransform.setRotation(glm::vec3(0, 0, glm::radians(_materialMappingRot)));
textureTransform.setScale(glm::vec3(_materialMappingScale, 1));
});
if (!parentID.isNull() || !drawMaterial) {
return;
}
batch.setModelTransform(renderTransform);
drawMaterial->setTextureTransforms(textureTransform);
// bind the material
RenderPipelines::bindMaterial(drawMaterial, batch, args->_enableTexturing);
args->_details._materialSwitches++;
// Draw!
if (_numVertices == 0) {
generateMesh();
}
batch.setInputFormat(_streamFormat);
batch.setInputStream(0, *_stream);
batch.draw(gpu::TRIANGLES, _numVertices, 0);
const int NUM_VERTICES_PER_TRIANGLE = 3;
args->_details._trianglesRendered += _numVertices / NUM_VERTICES_PER_TRIANGLE;
}