overte/libraries/physics/src/MeshInfo.cpp
2015-03-06 22:07:35 +05:30

161 lines
No EOL
6.7 KiB
C++

//
// MeshInfo.cpp
// libraries/physics/src
//
// Created by Virendra Singh 2015.02.28
// Copyright 2014 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include "MeshInfo.h"
#include <iostream>df
using namespace meshinfo;
//class to compute volume, mass, center of mass, and inertia tensor of a mesh.
//origin is the default reference point for generating the tetrahedron from each triangle of the mesh.
MeshInfo::MeshInfo(vector<Vertex> *vertices, vector<int> *triangles) :\
_vertices(vertices),
_triangles(triangles),
_centerOfMass(Vertex(0.0, 0.0, 0.0)){
}
MeshInfo::~MeshInfo(){
_vertices = NULL;
_triangles = NULL;
}
inline Vertex MeshInfo::getCentroid(const Vertex p1, const Vertex p2, const Vertex p3, const Vertex p4) const{
Vertex com;
com.x = (p1.x + p2.x + p3.x + p4.x) / 4.0f;
com.y = (p1.y + p2.y + p3.y + p4.y) / 4.0f;
com.z = (p1.z + p2.z + p3.z + p4.z) / 4.0f;
return com;
}
inline float MeshInfo::getVolume(const Vertex p1, const Vertex p2, const Vertex p3, const Vertex p4) const{
glm::mat4 tet = { glm::vec4(p1.x, p2.x, p3.x, p4.x), glm::vec4(p1.y, p2.y, p3.y, p4.y), glm::vec4(p1.z, p2.z, p3.z, p4.z),
glm::vec4(1.0f, 1.0f, 1.0f, 1.0f) };
return glm::determinant(tet) / 6.0f;
}
Vertex MeshInfo::getMeshCentroid() const{
return _centerOfMass;
}
vector<float> MeshInfo::computeMassProperties(){
vector<float> volumeAndInertia = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
Vertex origin(0.0, 0.0, 0.0);
float meshVolume = 0.0f;
glm::mat3 globalMomentOfInertia(0.0);
glm::mat3 globalProductOfInertia(0.0);
//First we need need the center of mass of the mesh in order to translate the tetrahedron inertia to center of mass of the mesh.
for (unsigned int i = 0; i < _triangles->size(); i += 3){
Vertex p1 = _vertices->at(_triangles->at(i));
Vertex p2 = _vertices->at(_triangles->at(i + 1));
Vertex p3 = _vertices->at(_triangles->at(i + 2));
float volume = getVolume(p1, p2, p3, origin);
Vertex com = getCentroid(origin, p1, p2, p3);
//Translate accumulated center of mass from each tetrahedron to mesh's center of mass using parallel axis theorem
meshVolume += volume;
_centerOfMass += com * volume;
}
if (meshVolume == 0){
return volumeAndInertia;
}
_centerOfMass = (_centerOfMass / (float)meshVolume);
//Translate the moment of inertia from each tetrahedron to mesh's center of mass using parallel axis theorem
for (unsigned int i = 0; i < _triangles->size(); i += 3){
Vertex p1 = _vertices->at(_triangles->at(i));
Vertex p2 = _vertices->at(_triangles->at(i + 1));
Vertex p3 = _vertices->at(_triangles->at(i + 2));
float volume = getVolume(p1, p2, p3, origin);
Vertex com = getCentroid(origin, p1, p2, p3);
glm::mat3 identity;
Vertex diff = _centerOfMass - com;
float diffDot = glm::dot(diff, diff);
glm::mat3 outerDiff = glm::outerProduct(diff, diff);
//centroid is used for calculating inertia tensor relative to center of mass.
// translate the tetrahedron to its center of mass using P = P - centroid
Vertex p0 = origin - com;
p1 = p1 - com;
p2 = p2 - com;
p3 = p3 - com;
//Calculate inertia tensor based on Tonon's Formulae given in the paper mentioned below.
//http://docsdrive.com/pdfs/sciencepublications/jmssp/2005/8-11.pdf
//Explicit exact formulas for the 3-D tetrahedron inertia tensor in terms of its vertex coordinates - F.Tonon
float inertia_a = (volume * 6.0f / 60.0f) * (
p0.y*p0.y + p0.y*p1.y + p0.y*p2.y + p0.y*p3.y +
p1.y*p1.y + p1.y*p2.y + p1.y*p3.y +
p2.y*p2.y + p2.y*p3.y +
p3.y*p3.y +
p0.z*p0.z + p0.z*p1.z + p0.z*p2.z + p0.z*p3.z +
p1.z*p1.z + p1.z*p2.z + p1.z*p3.z +
p2.z*p2.z + p2.z*p3.z +
p3.z*p3.z);
float inertia_b = (volume * 6.0f / 60.0f) * (
p0.x*p0.x + p0.x*p1.x + p0.x*p2.x + p0.x*p3.x +
p1.x*p1.x + p1.x*p2.x + p1.x*p3.x +
p2.x*p2.x + p2.x*p3.x +
p3.x*p3.x +
p0.z*p0.z + p0.z*p1.z + p0.z*p2.z + p0.z*p3.z +
p1.z*p1.z + p1.z*p2.z + p1.z*p3.z +
p2.z*p2.z + p2.z*p3.z +
p3.z*p3.z);
float inertia_c = (volume * 6.0f / 60.0f) * (
p0.x*p0.x + p0.x*p1.x + p0.x*p2.x + p0.x*p3.x +
p1.x*p1.x + p1.x*p2.x + p1.x*p3.x +
p2.x*p2.x + p2.x*p3.x +
p3.x*p3.x +
p0.y*p0.y + p0.y*p1.y + p0.y*p2.y + p0.y*p3.y +
p1.y*p1.y + p1.y*p2.y + p1.y*p3.y +
p2.y*p2.y + p2.y*p3.y +
p3.y*p3.y);
float inertia_aa = (volume * 6.0f / 120.0f) * (2.0f * (p0.y*p0.z + p1.y*p1.z + p2.y*p2.z + p3.y*p3.z) +
p0.y*p1.z + p0.y*p2.z + p0.y*p3.z +
p1.y*p0.z + p1.y*p2.z + p1.y*p3.z +
p2.y*p0.z + p2.y*p1.z + p2.y*p3.z +
p3.y*p0.z + p3.y*p1.z + p3.y*p2.z);
float inertia_bb = (volume * 6.0f / 120.0f) * (2.0f * (p0.x*p0.z + p1.x*p1.z + p2.x*p2.z + p3.x*p3.z) +
p0.x*p1.z + p0.x*p2.z + p0.x*p3.z +
p1.x*p0.z + p1.x*p2.z + p1.x*p3.z +
p2.x*p0.z + p2.x*p1.z + p2.x*p3.z +
p3.x*p0.z + p3.x*p1.z + p3.x*p2.z);
float inertia_cc = (volume * 6.0f / 120.0f) * (2.0f * (p0.x*p0.y + p1.x*p1.y + p2.x*p2.y + p3.x*p3.y) +
p0.x*p1.y + p0.x*p2.y + p0.x*p3.y +
p1.x*p0.y + p1.x*p2.y + p1.x*p3.y +
p2.x*p0.y + p2.x*p1.y + p2.x*p3.y +
p3.x*p0.y + p3.x*p1.y + p3.x*p2.y);
//3x3 of local inertia tensors of each tetrahedron. Inertia tensors are the diagonal elements
glm::mat3 localMomentInertia = { Vertex(inertia_a, 0.0f, 0.0f), Vertex(0.0f, inertia_b, 0.0f),
Vertex(0.0f, 0.0f, inertia_c) };
glm::mat3 localProductInertia = { Vertex(inertia_aa, 0.0f, 0.0f), Vertex(0.0f, inertia_bb, 0.0f),
Vertex(0.0f, 0.0f, inertia_cc) };
//Parallel axis theorem J = I * m[(R.R)*Identity - RxR] where x is outer cross product
globalMomentOfInertia += localMomentInertia + volume * ((diffDot*identity) - outerDiff);
globalProductOfInertia += localProductInertia + volume * ((diffDot * identity) - outerDiff);
}
volumeAndInertia[0] = meshVolume;
volumeAndInertia[1] = globalMomentOfInertia[0][0];
volumeAndInertia[2] = globalMomentOfInertia[1][1];
volumeAndInertia[3] = globalMomentOfInertia[2][2];
volumeAndInertia[4] = globalProductOfInertia[0][0];
volumeAndInertia[5] = globalProductOfInertia[1][1];
volumeAndInertia[6] = globalProductOfInertia[2][2];
return volumeAndInertia;
}