overte/libraries/particles/src/ParticleTreeElement.cpp

152 lines
5.2 KiB
C++

//
// ParticleTreeElement.cpp
// hifi
//
// Created by Brad Hefta-Gaub on 12/4/13.
// Copyright (c) 2013 HighFidelity, Inc. All rights reserved.
//
#include <QtCore/QDebug>
#include "ParticleTree.h"
#include "ParticleTreeElement.h"
ParticleTreeElement::ParticleTreeElement(unsigned char* octalCode) : OctreeElement() {
init(octalCode);
};
ParticleTreeElement::~ParticleTreeElement() {
_voxelMemoryUsage -= sizeof(ParticleTreeElement);
}
// This will be called primarily on addChildAt(), which means we're adding a child of our
// own type to our own tree. This means we should initialize that child with any tree and type
// specific settings that our children must have. One example is out VoxelSystem, which
// we know must match ours.
OctreeElement* ParticleTreeElement::createNewElement(unsigned char* octalCode) const {
ParticleTreeElement* newChild = new ParticleTreeElement(octalCode);
return newChild;
}
void ParticleTreeElement::init(unsigned char* octalCode) {
OctreeElement::init(octalCode);
_voxelMemoryUsage += sizeof(ParticleTreeElement);
}
ParticleTreeElement* ParticleTreeElement::addChildAtIndex(int index) {
return (ParticleTreeElement*)OctreeElement::addChildAtIndex(index);
}
bool ParticleTreeElement::appendElementData(OctreePacketData* packetData) const {
bool success = true; // assume the best...
// write our particles out...
uint16_t numberOfParticles = _particles.size();
success = packetData->appendValue(numberOfParticles);
//printf("ParticleTreeElement::appendElementData()... numberOfParticles=%d\n",numberOfParticles);
if (success) {
for (uint16_t i = 0; i < numberOfParticles; i++) {
const Particle& particle = _particles[i];
success = particle.appendParticleData(packetData);
if (!success) {
break;
}
}
}
return success;
}
void ParticleTreeElement::update(ParticleTreeUpdateArgs& args) {
markWithChangedTime();
// update our contained particles
uint16_t numberOfParticles = _particles.size();
for (uint16_t i = 0; i < numberOfParticles; i++) {
_particles[i].update();
// what if this update moves the particle to a new element??
if (!_box.contains(_particles[i].getPosition())) {
glm::vec3 position = _particles[i].getPosition() * (float)TREE_SCALE;
glm::vec3 boxBRN =_box.getCorner() * (float)TREE_SCALE;
glm::vec3 boxTLF =_box.calcTopFarLeft() * (float)TREE_SCALE;
printf("particle [%f,%f,%f] no longer contained in ParticleTreeElement() box [%f,%f,%f] -> [%f,%f,%f]\n",
position.x, position.y, position.z,
boxBRN.x, boxBRN.y, boxBRN.z,
boxTLF.x, boxTLF.y, boxTLF.z);
args._movingParticles.push_back(_particles[i]);
// erase this particle
_particles.erase(_particles.begin()+i);
printf("removed particle[%d]\n",i);
// reduce our index since we just removed this item
i--;
numberOfParticles--;
printf("numberOfParticles=%d]\n",numberOfParticles);
}
}
}
int ParticleTreeElement::readElementDataFromBuffer(const unsigned char* data, int bytesLeftToRead,
ReadBitstreamToTreeParams& args) {
const unsigned char* dataAt = data;
int bytesRead = 0;
uint16_t numberOfParticles = 0;
int expectedBytesPerParticle = Particle::expectedBytes();
_particles.clear();
if (bytesLeftToRead >= sizeof(numberOfParticles)) {
// read our particles in....
numberOfParticles = *(uint16_t*)dataAt;
dataAt += sizeof(numberOfParticles);
bytesLeftToRead -= sizeof(numberOfParticles);
bytesRead += sizeof(numberOfParticles);
if (bytesLeftToRead >= (numberOfParticles * expectedBytesPerParticle)) {
for (uint16_t i = 0; i < numberOfParticles; i++) {
Particle tempParticle;
int bytesForThisParticle = tempParticle.readParticleDataFromBuffer(dataAt, bytesLeftToRead, args);
_particles.push_back(tempParticle);
dataAt += bytesForThisParticle;
bytesLeftToRead -= bytesForThisParticle;
bytesRead += bytesForThisParticle;
}
}
}
return bytesRead;
}
// will average a "common reduced LOD view" from the the child elements...
void ParticleTreeElement::calculateAverageFromChildren() {
// nothing to do here yet...
}
// will detect if children are leaves AND collapsable into the parent node
// and in that case will collapse children and make this node
// a leaf, returns TRUE if all the leaves are collapsed into a
// single node
bool ParticleTreeElement::collapseChildren() {
// nothing to do here yet...
return false;
}
void ParticleTreeElement::storeParticle(const Particle& particle) {
_particles.push_back(particle);
markWithChangedTime();
printf("ParticleTreeElement::storeParticle() element=%p _particles.size()=%ld particle.getPosition()=%f,%f,%f\n",
this, _particles.size(),
particle.getPosition().x, particle.getPosition().y, particle.getPosition().z);
}