overte/libraries/shared/src/AACubeShape.cpp

76 lines
3.1 KiB
C++

//
// AACubeShape.cpp
// libraries/shared/src
//
// Created by Andrew Meadows on 2014.08.22
// Copyright 2014 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include <glm/glm.hpp>
#include <glm/gtx/norm.hpp>
#include "AACubeShape.h"
#include "NumericalConstants.h" // for SQUARE_ROOT_OF_3
glm::vec3 faceNormals[3] = { glm::vec3(1.0f, 0.0f, 0.0f), glm::vec3(0.0f, 1.0f, 0.0f), glm::vec3(0.0f, 0.0f, 1.0f) };
bool AACubeShape::findRayIntersection(RayIntersectionInfo& intersection) const {
// A = ray point
// B = cube center
glm::vec3 BA = _translation - intersection._rayStart;
// check for ray intersection with cube's bounding sphere
// a = distance along line to closest approach to B
float a = glm::dot(intersection._rayDirection, BA);
// b2 = squared distance from cube center to point of closest approach
float b2 = glm::length2(a * intersection._rayDirection - BA);
// r = bounding radius of cube
float halfSide = 0.5f * _scale;
const float r = SQUARE_ROOT_OF_3 * halfSide;
if (b2 > r * r) {
// line doesn't hit cube's bounding sphere
return false;
}
// check for tuncated/short ray
// maxLength = maximum possible distance between rayStart and center of cube
const float maxLength = glm::min(intersection._rayLength, intersection._hitDistance) + r;
if (a * a + b2 > maxLength * maxLength) {
// ray is not long enough to reach cube's bounding sphere
// NOTE: we don't fall in here when ray's length if FLT_MAX because maxLength^2 will be inf or nan
return false;
}
// the trivial checks have been exhausted, so must trace to each face
bool hit = false;
for (int i = 0; i < 3; ++i) {
for (float sign = -1.0f; sign < 2.0f; sign += 2.0f) {
glm::vec3 faceNormal = sign * faceNormals[i];
float rayDotPlane = glm::dot(intersection._rayDirection, faceNormal);
if (glm::abs(rayDotPlane) > EPSILON) {
float distanceToFace = (halfSide + glm::dot(BA, faceNormal)) / rayDotPlane;
if (distanceToFace >= 0.0f) {
glm::vec3 point = distanceToFace * intersection._rayDirection - BA;
int j = (i + 1) % 3;
int k = (i + 2) % 3;
glm::vec3 secondNormal = faceNormals[j];
glm::vec3 thirdNormal = faceNormals[k];
if (glm::abs(glm::dot(point, secondNormal)) > halfSide ||
glm::abs(glm::dot(point, thirdNormal)) > halfSide) {
continue;
}
if (distanceToFace < intersection._hitDistance && distanceToFace < intersection._rayLength) {
intersection._hitDistance = distanceToFace;
intersection._hitNormal = faceNormal;
intersection._hitShape = const_cast<AACubeShape*>(this);
hit = true;
}
}
}
}
}
return hit;
}