mirror of
https://github.com/overte-org/overte.git
synced 2025-07-14 09:16:37 +02:00
268 lines
9.9 KiB
C++
268 lines
9.9 KiB
C++
//
|
|
// Sound.cpp
|
|
// libraries/audio/src
|
|
//
|
|
// Created by Stephen Birarda on 1/2/2014.
|
|
// Copyright 2014 High Fidelity, Inc.
|
|
//
|
|
// Distributed under the Apache License, Version 2.0.
|
|
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
|
|
//
|
|
|
|
#include <stdint.h>
|
|
|
|
#include <glm/glm.hpp>
|
|
|
|
#include <QDataStream>
|
|
#include <QtCore/QDebug>
|
|
#include <QtNetwork/QNetworkRequest>
|
|
#include <QtNetwork/QNetworkReply>
|
|
#include <qendian.h>
|
|
|
|
#include <LimitedNodeList.h>
|
|
#include <NetworkAccessManager.h>
|
|
#include <SharedUtil.h>
|
|
|
|
#include "AudioRingBuffer.h"
|
|
#include "AudioFormat.h"
|
|
#include "AudioBuffer.h"
|
|
#include "AudioLogging.h"
|
|
#include "Sound.h"
|
|
|
|
static int soundMetaTypeId = qRegisterMetaType<Sound*>();
|
|
|
|
QScriptValue soundSharedPointerToScriptValue(QScriptEngine* engine, SharedSoundPointer const& in) {
|
|
return engine->newQObject(in.data());
|
|
}
|
|
|
|
void soundSharedPointerFromScriptValue(const QScriptValue& object, SharedSoundPointer &out) {
|
|
out = SharedSoundPointer(qobject_cast<Sound*>(object.toQObject()));
|
|
}
|
|
|
|
QScriptValue soundPointerToScriptValue(QScriptEngine* engine, Sound* const& in) {
|
|
return engine->newQObject(in);
|
|
}
|
|
|
|
void soundPointerFromScriptValue(const QScriptValue &object, Sound* &out) {
|
|
out = qobject_cast<Sound*>(object.toQObject());
|
|
}
|
|
|
|
Sound::Sound(const QUrl& url, bool isStereo) :
|
|
Resource(url),
|
|
_isStereo(isStereo),
|
|
_isReady(false)
|
|
{
|
|
|
|
}
|
|
|
|
void Sound::downloadFinished(const QByteArray& data) {
|
|
// replace our byte array with the downloaded data
|
|
QByteArray rawAudioByteArray = QByteArray(data);
|
|
QString fileName = getURL().fileName().toLower();
|
|
|
|
static const QString WAV_EXTENSION = ".wav";
|
|
static const QString RAW_EXTENSION = ".raw";
|
|
if (fileName.endsWith(WAV_EXTENSION)) {
|
|
|
|
QByteArray outputAudioByteArray;
|
|
|
|
interpretAsWav(rawAudioByteArray, outputAudioByteArray);
|
|
downSample(outputAudioByteArray);
|
|
} else if (fileName.endsWith(RAW_EXTENSION)) {
|
|
// check if this was a stereo raw file
|
|
// since it's raw the only way for us to know that is if the file was called .stereo.raw
|
|
if (fileName.toLower().endsWith("stereo.raw")) {
|
|
_isStereo = true;
|
|
qCDebug(audio) << "Processing sound of" << rawAudioByteArray.size() << "bytes from" << getURL() << "as stereo audio file.";
|
|
}
|
|
|
|
// Process as RAW file
|
|
downSample(rawAudioByteArray);
|
|
} else {
|
|
qCDebug(audio) << "Unknown sound file type";
|
|
}
|
|
|
|
_isReady = true;
|
|
emit ready();
|
|
}
|
|
|
|
void Sound::downSample(const QByteArray& rawAudioByteArray) {
|
|
// assume that this was a RAW file and is now an array of samples that are
|
|
// signed, 16-bit, 48Khz
|
|
|
|
// we want to convert it to the format that the audio-mixer wants
|
|
// which is signed, 16-bit, 24Khz
|
|
|
|
int numSourceSamples = rawAudioByteArray.size() / sizeof(AudioConstants::AudioSample);
|
|
|
|
if (_isStereo && numSourceSamples % 2 != 0){
|
|
// in the unlikely case that we have stereo audio but we seem to be missing a sample
|
|
// (the sample for one channel is missing in a set of interleaved samples)
|
|
// then drop the odd sample
|
|
--numSourceSamples;
|
|
}
|
|
|
|
int numDestinationSamples = numSourceSamples / 2.0f;
|
|
|
|
if (_isStereo && numDestinationSamples % 2 != 0) {
|
|
// if this is stereo we need to make sure we produce stereo output
|
|
// which means we should have an even number of output samples
|
|
numDestinationSamples += 1;
|
|
}
|
|
|
|
int numDestinationBytes = numDestinationSamples * sizeof(AudioConstants::AudioSample);
|
|
|
|
_byteArray.resize(numDestinationBytes);
|
|
|
|
int16_t* sourceSamples = (int16_t*) rawAudioByteArray.data();
|
|
int16_t* destinationSamples = (int16_t*) _byteArray.data();
|
|
|
|
if (_isStereo) {
|
|
for (int i = 0; i < numSourceSamples; i += 4) {
|
|
if (i + 2 >= numSourceSamples) {
|
|
destinationSamples[i / 2] = sourceSamples[i];
|
|
destinationSamples[(i / 2) + 1] = sourceSamples[i + 1];
|
|
} else {
|
|
destinationSamples[i / 2] = (sourceSamples[i] + sourceSamples[i + 2]) / 2;
|
|
destinationSamples[(i / 2) + 1] = (sourceSamples[i + 1] + sourceSamples[i + 3]) / 2;
|
|
}
|
|
}
|
|
} else {
|
|
for (int i = 1; i < numSourceSamples; i += 2) {
|
|
if (i + 1 >= numSourceSamples) {
|
|
destinationSamples[(i - 1) / 2] = (sourceSamples[i - 1] + sourceSamples[i]) / 2;
|
|
} else {
|
|
destinationSamples[(i - 1) / 2] = ((sourceSamples[i - 1] + sourceSamples[i + 1]) / 4) + (sourceSamples[i] / 2);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// Format description from https://ccrma.stanford.edu/courses/422/projects/WaveFormat/
|
|
//
|
|
// The header for a WAV file looks like this:
|
|
// Positions Sample Value Description
|
|
// 00-03 "RIFF" Marks the file as a riff file. Characters are each 1 byte long.
|
|
// 04-07 File size (int) Size of the overall file - 8 bytes, in bytes (32-bit integer).
|
|
// 08-11 "WAVE" File Type Header. For our purposes, it always equals "WAVE".
|
|
// 12-15 "fmt " Format chunk marker.
|
|
// 16-19 16 Length of format data as listed above
|
|
// 20-21 1 Type of format: (1=PCM, 257=Mu-Law, 258=A-Law, 259=ADPCM) - 2 byte integer
|
|
// 22-23 2 Number of Channels - 2 byte integer
|
|
// 24-27 44100 Sample Rate - 32 byte integer. Sample Rate = Number of Samples per second, or Hertz.
|
|
// 28-31 176400 (Sample Rate * BitsPerSample * Channels) / 8.
|
|
// 32-33 4 (BitsPerSample * Channels) / 8 - 8 bit mono2 - 8 bit stereo/16 bit mono4 - 16 bit stereo
|
|
// 34-35 16 Bits per sample
|
|
// 36-39 "data" Chunk header. Marks the beginning of the data section.
|
|
// 40-43 File size (int) Size of the data section.
|
|
// 44-?? Actual sound data
|
|
// Sample values are given above for a 16-bit stereo source.
|
|
//
|
|
|
|
struct chunk {
|
|
char id[4];
|
|
quint32 size;
|
|
};
|
|
|
|
struct RIFFHeader {
|
|
chunk descriptor; // "RIFF"
|
|
char type[4]; // "WAVE"
|
|
};
|
|
|
|
struct WAVEHeader {
|
|
chunk descriptor;
|
|
quint16 audioFormat; // Format type: 1=PCM, 257=Mu-Law, 258=A-Law, 259=ADPCM
|
|
quint16 numChannels; // Number of channels: 1=mono, 2=stereo
|
|
quint32 sampleRate;
|
|
quint32 byteRate; // Sample rate * Number of Channels * Bits per sample / 8
|
|
quint16 blockAlign; // (Number of Channels * Bits per sample) / 8.1
|
|
quint16 bitsPerSample;
|
|
};
|
|
|
|
struct DATAHeader {
|
|
chunk descriptor;
|
|
};
|
|
|
|
struct CombinedHeader {
|
|
RIFFHeader riff;
|
|
WAVEHeader wave;
|
|
};
|
|
|
|
void Sound::interpretAsWav(const QByteArray& inputAudioByteArray, QByteArray& outputAudioByteArray) {
|
|
|
|
CombinedHeader fileHeader;
|
|
|
|
// Create a data stream to analyze the data
|
|
QDataStream waveStream(const_cast<QByteArray *>(&inputAudioByteArray), QIODevice::ReadOnly);
|
|
if (waveStream.readRawData(reinterpret_cast<char *>(&fileHeader), sizeof(CombinedHeader)) == sizeof(CombinedHeader)) {
|
|
|
|
if (strncmp(fileHeader.riff.descriptor.id, "RIFF", 4) == 0) {
|
|
waveStream.setByteOrder(QDataStream::LittleEndian);
|
|
} else {
|
|
// descriptor.id == "RIFX" also signifies BigEndian file
|
|
// waveStream.setByteOrder(QDataStream::BigEndian);
|
|
qCDebug(audio) << "Currently not supporting big-endian audio files.";
|
|
return;
|
|
}
|
|
|
|
if (strncmp(fileHeader.riff.type, "WAVE", 4) != 0
|
|
|| strncmp(fileHeader.wave.descriptor.id, "fmt", 3) != 0) {
|
|
qCDebug(audio) << "Not a WAVE Audio file.";
|
|
return;
|
|
}
|
|
|
|
// added the endianess check as an extra level of security
|
|
|
|
if (qFromLittleEndian<quint16>(fileHeader.wave.audioFormat) != 1) {
|
|
qCDebug(audio) << "Currently not supporting non PCM audio files.";
|
|
return;
|
|
}
|
|
if (qFromLittleEndian<quint16>(fileHeader.wave.numChannels) == 2) {
|
|
_isStereo = true;
|
|
} else if (qFromLittleEndian<quint16>(fileHeader.wave.numChannels) > 2) {
|
|
qCDebug(audio) << "Currently not support audio files with more than 2 channels.";
|
|
}
|
|
|
|
if (qFromLittleEndian<quint16>(fileHeader.wave.bitsPerSample) != 16) {
|
|
qCDebug(audio) << "Currently not supporting non 16bit audio files.";
|
|
return;
|
|
}
|
|
if (qFromLittleEndian<quint32>(fileHeader.wave.sampleRate) != 48000) {
|
|
qCDebug(audio) << "Currently not supporting non 48KHz audio files.";
|
|
return;
|
|
}
|
|
|
|
// Skip any extra data in the WAVE chunk
|
|
waveStream.skipRawData(fileHeader.wave.descriptor.size - (sizeof(WAVEHeader) - sizeof(chunk)));
|
|
|
|
// Read off remaining header information
|
|
DATAHeader dataHeader;
|
|
while (true) {
|
|
// Read chunks until the "data" chunk is found
|
|
if (waveStream.readRawData(reinterpret_cast<char *>(&dataHeader), sizeof(DATAHeader)) == sizeof(DATAHeader)) {
|
|
if (strncmp(dataHeader.descriptor.id, "data", 4) == 0) {
|
|
break;
|
|
}
|
|
waveStream.skipRawData(dataHeader.descriptor.size);
|
|
} else {
|
|
qCDebug(audio) << "Could not read wav audio data header.";
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Now pull out the data
|
|
quint32 outputAudioByteArraySize = qFromLittleEndian<quint32>(dataHeader.descriptor.size);
|
|
outputAudioByteArray.resize(outputAudioByteArraySize);
|
|
if (waveStream.readRawData(outputAudioByteArray.data(), outputAudioByteArraySize) != (int)outputAudioByteArraySize) {
|
|
qCDebug(audio) << "Error reading WAV file";
|
|
}
|
|
|
|
_clipLength = (float) (outputAudioByteArraySize / (fileHeader.wave.sampleRate * fileHeader.wave.numChannels * fileHeader.wave.bitsPerSample / 8.0f));
|
|
|
|
|
|
} else {
|
|
qCDebug(audio) << "Could not read wav audio file header.";
|
|
return;
|
|
}
|
|
}
|