overte/assignment-client/src/entities/EntityTreeSendThread.cpp
2017-09-29 11:34:33 -07:00

503 lines
21 KiB
C++

//
// EntityTreeSendThread.cpp
// assignment-client/src/entities
//
// Created by Stephen Birarda on 2/15/17.
// Copyright 2017 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include "EntityTreeSendThread.h"
#include <iostream> // adebug
#include <EntityNodeData.h>
#include <EntityTypes.h>
#include "EntityServer.h"
const float DO_NOT_SEND = -1.0e-6f;
void ConicalView::set(const ViewFrustum& viewFrustum) {
// The ConicalView has two parts: a central sphere (same as ViewFrustm) and a circular cone that bounds the frustum part.
// Why? Because approximate intersection tests are much faster to compute for a cone than for a frustum.
_position = viewFrustum.getPosition();
_direction = viewFrustum.getDirection();
// We cache the sin and cos of the half angle of the cone that bounds the frustum.
// (the math here is left as an exercise for the reader)
float A = viewFrustum.getAspectRatio();
float t = tanf(0.5f * viewFrustum.getFieldOfView());
_cosAngle = 1.0f / sqrtf(1.0f + (A * A + 1.0f) * (t * t));
_sinAngle = sqrtf(1.0f - _cosAngle * _cosAngle);
_radius = viewFrustum.getCenterRadius();
}
float ConicalView::computePriority(const AACube& cube) const {
glm::vec3 p = cube.calcCenter() - _position; // position of bounding sphere in view-frame
float d = glm::length(p); // distance to center of bounding sphere
float r = 0.5f * cube.getScale(); // radius of bounding sphere
if (d < _radius + r) {
return r;
}
if (glm::dot(p, _direction) > sqrtf(d * d - r * r) * _cosAngle - r * _sinAngle) {
const float AVOID_DIVIDE_BY_ZERO = 0.001f;
return r / (d + AVOID_DIVIDE_BY_ZERO);
}
return DO_NOT_SEND;
}
// static
float ConicalView::computePriority(const EntityItemPointer& entity) const {
assert(entity);
bool success;
AACube cube = entity->getQueryAACube(success);
if (success) {
return computePriority(cube);
} else {
// when in doubt give it something positive
return 1.0f;
}
}
float PrioritizedEntity::updatePriority(const ConicalView& conicalView) {
EntityItemPointer entity = _weakEntity.lock();
if (entity) {
_priority = conicalView.computePriority(entity);
} else {
_priority = DO_NOT_SEND;
}
return _priority;
}
Fork::Fork(EntityTreeElementPointer& element) : _nextIndex(0) {
assert(element);
_weakElement = element;
}
void Fork::getNextVisibleElementFirstTime(VisibleElement& next, const ViewFrustum& view) {
// NOTE: no need to set next.intersection in the "FirstTime" context
if (_nextIndex == -1) {
// only get here for the root Fork at the very beginning of traversal
// safe to assume this element intersects view
++_nextIndex;
next.element = _weakElement.lock();
return;
} else if (_nextIndex < NUMBER_OF_CHILDREN) {
EntityTreeElementPointer element = _weakElement.lock();
if (element) {
while (_nextIndex < NUMBER_OF_CHILDREN) {
EntityTreeElementPointer nextElement = element->getChildAtIndex(_nextIndex);
++_nextIndex;
if (nextElement && view.cubeIntersectsKeyhole(nextElement->getAACube())) {
next.element = nextElement;
return;
}
}
}
}
next.element.reset();
}
void Fork::getNextVisibleElementAgain(VisibleElement& next, const ViewFrustum& view, uint64_t lastTime) {
if (_nextIndex == -1) {
// only get here for the root Fork at the very beginning of traversal
// safe to assume this element intersects view
++_nextIndex;
EntityTreeElementPointer element = _weakElement.lock();
// root case is special: its intersection is always INTERSECT
// and we can skip it if the content hasn't changed
if (element->getLastChangedContent() > lastTime) {
next.element = element;
next.intersection = ViewFrustum::INTERSECT;
return;
}
}
if (_nextIndex < NUMBER_OF_CHILDREN) {
EntityTreeElementPointer element = _weakElement.lock();
if (element) {
while (_nextIndex < NUMBER_OF_CHILDREN) {
EntityTreeElementPointer nextElement = element->getChildAtIndex(_nextIndex);
++_nextIndex;
if (nextElement && nextElement->getLastChanged() > lastTime) {
ViewFrustum::intersection intersection = view.calculateCubeKeyholeIntersection(nextElement->getAACube());
if (intersection != ViewFrustum::OUTSIDE) {
next.element = nextElement;
next.intersection = intersection;
return;
}
}
}
}
}
next.element.reset();
next.intersection = ViewFrustum::OUTSIDE;
}
void Fork::getNextVisibleElementDifferential(VisibleElement& next,
const ViewFrustum& view, const ViewFrustum& lastView, uint64_t lastTime) {
if (_nextIndex == -1) {
// only get here for the root Fork at the very beginning of traversal
// safe to assume this element intersects view
++_nextIndex;
EntityTreeElementPointer element = _weakElement.lock();
// root case is special: its intersection is always INTERSECT
// and we can skip it if the content hasn't changed
if (element->getLastChangedContent() > lastTime) {
next.element = element;
next.intersection = ViewFrustum::INTERSECT;
return;
}
}
if (_nextIndex < NUMBER_OF_CHILDREN) {
EntityTreeElementPointer element = _weakElement.lock();
if (element) {
while (_nextIndex < NUMBER_OF_CHILDREN) {
EntityTreeElementPointer nextElement = element->getChildAtIndex(_nextIndex);
++_nextIndex;
if (nextElement) {
AACube cube = nextElement->getAACube();
// NOTE: for differential case next.intersection is against the _completedView
ViewFrustum::intersection intersection = lastView.calculateCubeKeyholeIntersection(cube);
if ( lastView.calculateCubeKeyholeIntersection(cube) != ViewFrustum::OUTSIDE &&
!(intersection == ViewFrustum::INSIDE && nextElement->getLastChanged() < lastTime)) {
next.element = nextElement;
next.intersection = intersection;
return;
}
}
}
}
}
next.element.reset();
next.intersection = ViewFrustum::OUTSIDE;
}
EntityTreeSendThread::EntityTreeSendThread(OctreeServer* myServer, const SharedNodePointer& node)
: OctreeSendThread(myServer, node) {
const int32_t MIN_PATH_DEPTH = 16;
_traversalPath.reserve(MIN_PATH_DEPTH);
}
void EntityTreeSendThread::preDistributionProcessing() {
auto node = _node.toStrongRef();
auto nodeData = static_cast<EntityNodeData*>(node->getLinkedData());
if (nodeData) {
auto jsonQuery = nodeData->getJSONParameters();
// check if we have a JSON query with flags
auto flags = jsonQuery[EntityJSONQueryProperties::FLAGS_PROPERTY].toObject();
if (!flags.isEmpty()) {
// check the flags object for specific flags that require special pre-processing
bool includeAncestors = flags[EntityJSONQueryProperties::INCLUDE_ANCESTORS_PROPERTY].toBool();
bool includeDescendants = flags[EntityJSONQueryProperties::INCLUDE_DESCENDANTS_PROPERTY].toBool();
if (includeAncestors || includeDescendants) {
// we need to either include the ancestors, descendants, or both for entities matching the filter
// included in the JSON query
// first reset our flagged extra entities so we start with an empty set
nodeData->resetFlaggedExtraEntities();
auto entityTree = std::static_pointer_cast<EntityTree>(_myServer->getOctree());
bool requiresFullScene = false;
// enumerate the set of entity IDs we know currently match the filter
foreach(const QUuid& entityID, nodeData->getSentFilteredEntities()) {
if (includeAncestors) {
// we need to include ancestors - recurse up to reach them all and add their IDs
// to the set of extra entities to include for this node
entityTree->withReadLock([&]{
auto filteredEntity = entityTree->findEntityByID(entityID);
if (filteredEntity) {
requiresFullScene |= addAncestorsToExtraFlaggedEntities(entityID, *filteredEntity, *nodeData);
}
});
}
if (includeDescendants) {
// we need to include descendants - recurse down to reach them all and add their IDs
// to the set of extra entities to include for this node
entityTree->withReadLock([&]{
auto filteredEntity = entityTree->findEntityByID(entityID);
if (filteredEntity) {
requiresFullScene |= addDescendantsToExtraFlaggedEntities(entityID, *filteredEntity, *nodeData);
}
});
}
}
if (requiresFullScene) {
// for one or more of the entities matching our filter we found new extra entities to include
// because it is possible that one of these entities hasn't changed since our last send
// and therefore would not be recursed to, we need to force a full traversal for this pass
// of the tree to allow it to grab all of the extra entities we're asking it to include
nodeData->setShouldForceFullScene(requiresFullScene);
}
}
}
}
}
void EntityTreeSendThread::traverseTreeAndSendContents(SharedNodePointer node, OctreeQueryNode* nodeData,
bool viewFrustumChanged, bool isFullScene) {
// BEGIN EXPERIMENTAL DIFFERENTIAL TRAVERSAL
{
// DEBUG HACK: trigger traversal (Again) every so often
const uint64_t TRAVERSE_AGAIN_PERIOD = 2 * USECS_PER_SECOND;
if (!viewFrustumChanged && usecTimestampNow() > _startOfCompletedTraversal + TRAVERSE_AGAIN_PERIOD) {
viewFrustumChanged = true;
}
}
if (nodeData->getUsesFrustum()) {
if (viewFrustumChanged) {
ViewFrustum viewFrustum;
nodeData->copyCurrentViewFrustum(viewFrustum);
EntityTreeElementPointer root = std::dynamic_pointer_cast<EntityTreeElement>(_myServer->getOctree()->getRoot());
startNewTraversal(viewFrustum, root);
}
}
if (!_traversalPath.empty()) {
uint64_t startTime = usecTimestampNow();
uint64_t now = startTime;
VisibleElement next;
getNextVisibleElement(next);
while (next.element) {
if (next.element->hasContent()) {
_scanNextElementCallback(next);
}
// TODO: pick a reasonable budget for each partial traversal
const uint64_t PARTIAL_TRAVERSAL_TIME_BUDGET = 100000; // usec
now = usecTimestampNow();
if (now - startTime > PARTIAL_TRAVERSAL_TIME_BUDGET) {
break;
}
getNextVisibleElement(next);
}
uint64_t dt = now - startTime;
std::cout << "adebug traversal complete " << " Q.size = " << _sendQueue.size() << " dt = " << dt << std::endl; // adebug
}
if (!_sendQueue.empty()) {
// print what needs to be sent
while (!_sendQueue.empty()) {
PrioritizedEntity entry = _sendQueue.top();
EntityItemPointer entity = entry.getEntity();
if (entity) {
std::cout << "adebug '" << entity->getName().toStdString() << "'"
<< " : " << entry.getPriority() << std::endl; // adebug
}
_sendQueue.pop();
std::cout << "adebug" << std::endl; // adebug
}
}
// END EXPERIMENTAL DIFFERENTIAL TRAVERSAL
OctreeSendThread::traverseTreeAndSendContents(node, nodeData, viewFrustumChanged, isFullScene);
}
bool EntityTreeSendThread::addAncestorsToExtraFlaggedEntities(const QUuid& filteredEntityID,
EntityItem& entityItem, EntityNodeData& nodeData) {
// check if this entity has a parent that is also an entity
bool success = false;
auto entityParent = entityItem.getParentPointer(success);
if (success && entityParent && entityParent->getNestableType() == NestableType::Entity) {
// we found a parent that is an entity item
// first add it to the extra list of things we need to send
bool parentWasNew = nodeData.insertFlaggedExtraEntity(filteredEntityID, entityParent->getID());
// now recursively call ourselves to get its ancestors added too
auto parentEntityItem = std::static_pointer_cast<EntityItem>(entityParent);
bool ancestorsWereNew = addAncestorsToExtraFlaggedEntities(filteredEntityID, *parentEntityItem, nodeData);
// return boolean if our parent or any of our ancestors were new additions (via insertFlaggedExtraEntity)
return parentWasNew || ancestorsWereNew;
}
// since we didn't have a parent niether of our parents or ancestors could be new additions
return false;
}
bool EntityTreeSendThread::addDescendantsToExtraFlaggedEntities(const QUuid& filteredEntityID,
EntityItem& entityItem, EntityNodeData& nodeData) {
bool hasNewChild = false;
bool hasNewDescendants = false;
// enumerate the immediate children of this entity
foreach (SpatiallyNestablePointer child, entityItem.getChildren()) {
if (child && child->getNestableType() == NestableType::Entity) {
// this is a child that is an entity
// first add it to the extra list of things we need to send
hasNewChild |= nodeData.insertFlaggedExtraEntity(filteredEntityID, child->getID());
// now recursively call ourselves to get its descendants added too
auto childEntityItem = std::static_pointer_cast<EntityItem>(child);
hasNewDescendants |= addDescendantsToExtraFlaggedEntities(filteredEntityID, *childEntityItem, nodeData);
}
}
// return our boolean indicating if we added new children or descendants as extra entities to send
// (via insertFlaggedExtraEntity)
return hasNewChild || hasNewDescendants;
}
void EntityTreeSendThread::startNewTraversal(const ViewFrustum& viewFrustum, EntityTreeElementPointer root) {
// there are three types of traversal:
//
// (1) FirstTime = at login --> find everything in view
// (2) Again = view hasn't changed --> find what has changed since last complete traversal
// (3) Differential = view has changed --> find what has changed or in new view but not old
//
// For each traversal type we define two callback lambdas:
//
// _getNextVisibleElementCallback = identifies elements that need to be traversed,i
// updates VisibleElement ref argument with pointer-to-element and view-intersection
// (INSIDE, INTERSECT, or OUTSIDE)
//
// _scanNextElementCallback = identifies entities that need to be appended to _sendQueue
//
// The _conicalView is updated here as a cached view approximation used by the lambdas for efficient
// computation of entity sorting priorities.
//
if (_startOfCompletedTraversal == 0) {
// first time
_currentView = viewFrustum;
_conicalView.set(_currentView);
_getNextVisibleElementCallback = [&](VisibleElement& next) {
_traversalPath.back().getNextVisibleElementFirstTime(next, _currentView);
};
_scanNextElementCallback = [&](VisibleElement& next) {
next.element->forEachEntity([&](EntityItemPointer entity) {
bool success = false;
AACube cube = entity->getQueryAACube(success);
if (success) {
if (_currentView.cubeIntersectsKeyhole(cube)) {
float priority = _conicalView.computePriority(cube);
_sendQueue.push(PrioritizedEntity(entity, priority));
}
} else {
const float WHEN_IN_DOUBT_PRIORITY = 1.0f;
_sendQueue.push(PrioritizedEntity(entity, WHEN_IN_DOUBT_PRIORITY));
}
});
};
} else if (_currentView.isVerySimilar(viewFrustum)) {
// again
_getNextVisibleElementCallback = [&](VisibleElement& next) {
_traversalPath.back().getNextVisibleElementAgain(next, _currentView, _startOfCompletedTraversal);
};
_scanNextElementCallback = [&](VisibleElement& next) {
if (next.element->getLastChangedContent() > _startOfCompletedTraversal) {
next.element->forEachEntity([&](EntityItemPointer entity) {
if (entity->getLastEdited() > _startOfCompletedTraversal) {
bool success = false;
AACube cube = entity->getQueryAACube(success);
if (success) {
if (next.intersection == ViewFrustum::INSIDE || _currentView.cubeIntersectsKeyhole(cube)) {
float priority = _conicalView.computePriority(cube);
_sendQueue.push(PrioritizedEntity(entity, priority));
}
} else {
const float WHEN_IN_DOUBT_PRIORITY = 1.0f;
_sendQueue.push(PrioritizedEntity(entity, WHEN_IN_DOUBT_PRIORITY));
}
}
});
}
};
} else {
// differential
_currentView = viewFrustum;
_conicalView.set(_currentView);
_getNextVisibleElementCallback = [&](VisibleElement& next) {
_traversalPath.back().getNextVisibleElementDifferential(next, _currentView, _completedView, _startOfCompletedTraversal);
};
_scanNextElementCallback = [&](VisibleElement& next) {
// NOTE: for differential case next.intersection is against _completedView not _currentView
if (next.element->getLastChangedContent() > _startOfCompletedTraversal || next.intersection != ViewFrustum::INSIDE) {
next.element->forEachEntity([&](EntityItemPointer entity) {
bool success = false;
AACube cube = entity->getQueryAACube(success);
if (success) {
if (_currentView.cubeIntersectsKeyhole(cube) &&
(entity->getLastEdited() > _startOfCompletedTraversal ||
!_completedView.cubeIntersectsKeyhole(cube))) {
float priority = _conicalView.computePriority(cube);
_sendQueue.push(PrioritizedEntity(entity, priority));
}
} else {
const float WHEN_IN_DOUBT_PRIORITY = 1.0f;
_sendQueue.push(PrioritizedEntity(entity, WHEN_IN_DOUBT_PRIORITY));
}
});
}
};
}
_traversalPath.clear();
assert(root);
_traversalPath.push_back(Fork(root));
// set root fork's index such that root element returned at getNextElement()
_traversalPath.back().initRootNextIndex();
_startOfCurrentTraversal = usecTimestampNow();
}
void EntityTreeSendThread::getNextVisibleElement(VisibleElement& next) {
if (_traversalPath.empty()) {
next.element.reset();
next.intersection = ViewFrustum::OUTSIDE;
return;
}
_getNextVisibleElementCallback(next);
if (next.element) {
int8_t nextIndex = _traversalPath.back().getNextIndex();
if (nextIndex > 0) {
// next.element needs to be added to the path
_traversalPath.push_back(Fork(next.element));
}
} else {
// we're done at this level
while (!next.element) {
// pop one level
_traversalPath.pop_back();
if (_traversalPath.empty()) {
// we've traversed the entire tree
_completedView = _currentView;
_startOfCompletedTraversal = _startOfCurrentTraversal;
return;
}
// keep looking for next
_getNextVisibleElementCallback(next);
if (next.element) {
// we've descended one level so add it to the path
_traversalPath.push_back(Fork(next.element));
}
}
}
}
// DEBUG method: delete later
void EntityTreeSendThread::dump() const {
for (size_t i = 0; i < _traversalPath.size(); ++i) {
std::cout << (int32_t)(_traversalPath[i].getNextIndex()) << "-->";
}
}