overte/libraries/render-utils/src/Model.h
Ryan Huffman cafc5b7a7c Merge pull request #5049 from ZappoMan/team-teaching-optimize-offset
TEAM TEACHING - avatar changing model URLs
2015-06-04 14:29:44 -07:00

578 lines
22 KiB
C++

//
// Model.h
// interface/src/renderer
//
// Created by Andrzej Kapolka on 10/18/13.
// Copyright 2013 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#ifndef hifi_Model_h
#define hifi_Model_h
#include <gpu/GPUConfig.h>
#include <QBitArray>
#include <QObject>
#include <QUrl>
#include <QMutex>
#include <unordered_map>
#include <functional>
#include <AABox.h>
#include <AnimationCache.h>
#include <DependencyManager.h>
#include <GeometryUtil.h>
#include <gpu/Stream.h>
#include <gpu/Batch.h>
#include <gpu/Pipeline.h>
#include "PhysicsEntity.h"
#include <render/Scene.h>
#include <Transform.h>
#include "AnimationHandle.h"
#include "GeometryCache.h"
#include "JointState.h"
#include "ProgramObject.h"
#include "TextureCache.h"
class AbstractViewStateInterface;
class QScriptEngine;
class Shape;
#include "RenderArgs.h"
class ViewFrustum;
namespace render {
class Scene;
class PendingChanges;
typedef unsigned int ItemID;
}
class OpaqueMeshPart;
class TransparentMeshPart;
inline uint qHash(const std::shared_ptr<TransparentMeshPart>& a, uint seed) {
return qHash(a.get(), seed);
}
inline uint qHash(const std::shared_ptr<OpaqueMeshPart>& a, uint seed) {
return qHash(a.get(), seed);
}
/// A generic 3D model displaying geometry loaded from a URL.
class Model : public QObject, public PhysicsEntity {
Q_OBJECT
public:
typedef RenderArgs::RenderMode RenderMode;
static void setAbstractViewStateInterface(AbstractViewStateInterface* viewState) { _viewState = viewState; }
Model(QObject* parent = NULL);
virtual ~Model();
/// enables/disables scale to fit behavior, the model will be automatically scaled to the specified largest dimension
void setScaleToFit(bool scaleToFit, float largestDimension = 0.0f);
bool getScaleToFit() const { return _scaleToFit; } /// is scale to fit enabled
bool getIsScaledToFit() const { return _scaledToFit; } /// is model scaled to fit
const glm::vec3& getScaleToFitDimensions() const { return _scaleToFitDimensions; } /// the dimensions model is scaled to
void setScaleToFit(bool scaleToFit, const glm::vec3& dimensions);
void setSnapModelToCenter(bool snapModelToCenter) {
setSnapModelToRegistrationPoint(snapModelToCenter, glm::vec3(0.5f,0.5f,0.5f));
};
bool getSnapModelToCenter() {
return _snapModelToRegistrationPoint && _registrationPoint == glm::vec3(0.5f,0.5f,0.5f);
}
void setSnapModelToRegistrationPoint(bool snapModelToRegistrationPoint, const glm::vec3& registrationPoint);
bool getSnapModelToRegistrationPoint() { return _snapModelToRegistrationPoint; }
void setScale(const glm::vec3& scale);
const glm::vec3& getScale() const { return _scale; }
void setOffset(const glm::vec3& offset);
const glm::vec3& getOffset() const { return _offset; }
void setPupilDilation(float dilation) { _pupilDilation = dilation; }
float getPupilDilation() const { return _pupilDilation; }
void setBlendshapeCoefficients(const QVector<float>& coefficients) { _blendshapeCoefficients = coefficients; }
const QVector<float>& getBlendshapeCoefficients() const { return _blendshapeCoefficients; }
bool isActive() const { return _geometry && _geometry->isLoaded(); }
bool isRenderable() const { return !_meshStates.isEmpty() || (isActive() && _geometry->getMeshes().isEmpty()); }
void setVisibleInScene(bool newValue, std::shared_ptr<render::Scene> scene);
bool isVisible() const { return _isVisible; }
bool isLoadedWithTextures() const { return _geometry && _geometry->isLoadedWithTextures(); }
void init();
void reset();
virtual void simulate(float deltaTime, bool fullUpdate = true);
void renderSetup(RenderArgs* args);
// new Scene/Engine rendering support
bool needsFixupInScene() { return !_readyWhenAdded && readyToAddToScene(); }
bool readyToAddToScene(RenderArgs* renderArgs = nullptr) { return !_needsReload && isRenderable() && isActive() && isLoadedWithTextures(); }
bool addToScene(std::shared_ptr<render::Scene> scene, render::PendingChanges& pendingChanges);
void removeFromScene(std::shared_ptr<render::Scene> scene, render::PendingChanges& pendingChanges);
/// Sets the URL of the model to render.
/// \param fallback the URL of a fallback model to render if the requested model fails to load
/// \param retainCurrent if true, keep rendering the current model until the new one is loaded
/// \param delayLoad if true, don't load the model immediately; wait until actually requested
Q_INVOKABLE void setURL(const QUrl& url, const QUrl& fallback = QUrl(),
bool retainCurrent = false, bool delayLoad = false);
const QUrl& getURL() const { return _url; }
// Set the model to use for collisions
Q_INVOKABLE void setCollisionModelURL(const QUrl& url);
const QUrl& getCollisionURL() const { return _collisionUrl; }
void setIsWireframe(bool isWireframe) { _isWireframe = isWireframe; }
bool isWireframe() const { return _isWireframe; }
/// Sets the distance parameter used for LOD computations.
void setLODDistance(float distance) { _lodDistance = distance; }
/// Returns the extents of the model in its bind pose.
Extents getBindExtents() const;
/// Returns the extents of the model's mesh
Extents getMeshExtents() const;
/// Returns the unscaled extents of the model's mesh
Extents getUnscaledMeshExtents() const;
/// Returns the scaled equivalent of some extents in model space.
Extents calculateScaledOffsetExtents(const Extents& extents) const;
/// Returns the world space equivalent of some box in model space.
AABox calculateScaledOffsetAABox(const AABox& box) const;
/// Returns the scaled equivalent of a point in model space.
glm::vec3 calculateScaledOffsetPoint(const glm::vec3& point) const;
/// Returns a reference to the shared geometry.
const QSharedPointer<NetworkGeometry>& getGeometry() const { return _geometry; }
/// Returns a reference to the shared collision geometry.
const QSharedPointer<NetworkGeometry> getCollisionGeometry(bool delayLoad = true);
/// Returns the number of joint states in the model.
int getJointStateCount() const { return _jointStates.size(); }
/// Fetches the joint state at the specified index.
/// \return whether or not the joint state is "valid" (that is, non-default)
bool getJointState(int index, glm::quat& rotation) const;
/// Fetches the visible joint state at the specified index.
/// \return whether or not the joint state is "valid" (that is, non-default)
bool getVisibleJointState(int index, glm::quat& rotation) const;
/// Clear the joint states
void clearJointState(int index);
/// Clear the joint animation priority
void clearJointAnimationPriority(int index);
/// Sets the joint state at the specified index.
void setJointState(int index, bool valid, const glm::quat& rotation = glm::quat(), float priority = 1.0f);
/// Returns the index of the parent of the indexed joint, or -1 if not found.
int getParentJointIndex(int jointIndex) const;
/// Returns the index of the last free ancestor of the indexed joint, or -1 if not found.
int getLastFreeJointIndex(int jointIndex) const;
bool getJointPositionInWorldFrame(int jointIndex, glm::vec3& position) const;
bool getJointRotationInWorldFrame(int jointIndex, glm::quat& rotation) const;
bool getJointCombinedRotation(int jointIndex, glm::quat& rotation) const;
bool getVisibleJointPositionInWorldFrame(int jointIndex, glm::vec3& position) const;
bool getVisibleJointRotationInWorldFrame(int jointIndex, glm::quat& rotation) const;
/// \param jointIndex index of joint in model structure
/// \param position[out] position of joint in model-frame
/// \return true if joint exists
bool getJointPosition(int jointIndex, glm::vec3& position) const;
/// \param jointIndex index of joint in model structure
/// \param rotation[out] rotation of joint in model-frame
/// \return true if joint exists
bool getJointRotation(int jointIndex, glm::quat& rotation) const;
QStringList getJointNames() const;
AnimationHandlePointer createAnimationHandle();
const QList<AnimationHandlePointer>& getRunningAnimations() const { return _runningAnimations; }
// virtual overrides from PhysicsEntity
virtual void buildShapes();
virtual void updateShapePositions();
virtual void renderJointCollisionShapes(float alpha);
bool maybeStartBlender();
/// Sets blended vertices computed in a separate thread.
void setBlendedVertices(int blendNumber, const QWeakPointer<NetworkGeometry>& geometry,
const QVector<glm::vec3>& vertices, const QVector<glm::vec3>& normals);
void setShowTrueJointTransforms(bool show) { _showTrueJointTransforms = show; }
QVector<JointState>& getJointStates() { return _jointStates; }
const QVector<JointState>& getJointStates() const { return _jointStates; }
void inverseKinematics(int jointIndex, glm::vec3 position, const glm::quat& rotation, float priority);
Q_INVOKABLE void setTextureWithNameToURL(const QString& name, const QUrl& url)
{ _geometry->setTextureWithNameToURL(name, url); }
bool findRayIntersectionAgainstSubMeshes(const glm::vec3& origin, const glm::vec3& direction, float& distance,
BoxFace& face, QString& extraInfo, bool pickAgainstTriangles = false);
bool convexHullContains(glm::vec3 point);
AABox getPartBounds(int meshIndex, int partIndex);
void renderPart(RenderArgs* args, int meshIndex, int partIndex, bool translucent);
protected:
QSharedPointer<NetworkGeometry> _geometry;
glm::vec3 _scale;
glm::vec3 _offset;
static float FAKE_DIMENSION_PLACEHOLDER;
bool _scaleToFit; /// If you set scaleToFit, we will calculate scale based on MeshExtents
glm::vec3 _scaleToFitDimensions; /// this is the dimensions that scale to fit will use
bool _scaledToFit; /// have we scaled to fit
bool _snapModelToRegistrationPoint; /// is the model's offset automatically adjusted to a registration point in model space
bool _snappedToRegistrationPoint; /// are we currently snapped to a registration point
glm::vec3 _registrationPoint; /// the point in model space our center is snapped to
bool _showTrueJointTransforms;
QVector<JointState> _jointStates;
class MeshState {
public:
QVector<glm::mat4> clusterMatrices;
};
QVector<MeshState> _meshStates;
// returns 'true' if needs fullUpdate after geometry change
bool updateGeometry();
virtual void initJointStates(QVector<JointState> states);
void setScaleInternal(const glm::vec3& scale);
void scaleToFit();
void snapToRegistrationPoint();
void simulateInternal(float deltaTime);
/// Updates the state of the joint at the specified index.
virtual void updateJointState(int index);
virtual void updateVisibleJointStates();
/// \param jointIndex index of joint in model structure
/// \param position position of joint in model-frame
/// \param rotation rotation of joint in model-frame
/// \param useRotation false if rotation should be ignored
/// \param lastFreeIndex
/// \param allIntermediatesFree
/// \param alignment
/// \return true if joint exists
bool setJointPosition(int jointIndex, const glm::vec3& position, const glm::quat& rotation = glm::quat(),
bool useRotation = false, int lastFreeIndex = -1, bool allIntermediatesFree = false,
const glm::vec3& alignment = glm::vec3(0.0f, -1.0f, 0.0f), float priority = 1.0f);
/// Restores the indexed joint to its default position.
/// \param fraction the fraction of the default position to apply (i.e., 0.25f to slerp one fourth of the way to
/// the original position
/// \return true if the joint was found
bool restoreJointPosition(int jointIndex, float fraction = 1.0f, float priority = 0.0f);
/// Computes and returns the extended length of the limb terminating at the specified joint and starting at the joint's
/// first free ancestor.
float getLimbLength(int jointIndex) const;
/// Allow sub classes to force invalidating the bboxes
void invalidCalculatedMeshBoxes() { _calculatedMeshBoxesValid = false; }
private:
friend class AnimationHandle;
void applyNextGeometry();
void deleteGeometry();
QVector<JointState> createJointStates(const FBXGeometry& geometry);
void initJointTransforms();
QSharedPointer<NetworkGeometry> _baseGeometry; ///< reference required to prevent collection of base
QSharedPointer<NetworkGeometry> _nextBaseGeometry;
QSharedPointer<NetworkGeometry> _nextGeometry;
float _lodDistance;
float _lodHysteresis;
float _nextLODHysteresis;
QSharedPointer<NetworkGeometry> _collisionGeometry;
QSharedPointer<NetworkGeometry> _saveNonCollisionGeometry;
float _pupilDilation;
QVector<float> _blendshapeCoefficients;
QUrl _url;
QUrl _collisionUrl;
bool _isVisible;
gpu::Buffers _blendedVertexBuffers;
std::vector<Transform> _transforms;
gpu::Batch _renderBatch;
QVector<QVector<QSharedPointer<Texture> > > _dilatedTextures;
QVector<Model*> _attachments;
QSet<WeakAnimationHandlePointer> _animationHandles;
QList<AnimationHandlePointer> _runningAnimations;
QVector<float> _blendedBlendshapeCoefficients;
int _blendNumber;
int _appliedBlendNumber;
class Locations {
public:
int tangent;
int alphaThreshold;
int texcoordMatrices;
int specularTextureUnit;
int emissiveTextureUnit;
int emissiveParams;
int glowIntensity;
int materialBufferUnit;
int clusterMatrices;
int clusterIndices;
int clusterWeights;
};
QHash<QPair<int,int>, AABox> _calculatedMeshPartBoxes; // world coordinate AABoxes for all sub mesh part boxes
QHash<QPair<int,int>, qint64> _calculatedMeshPartOffet;
bool _calculatedMeshPartBoxesValid;
QVector<AABox> _calculatedMeshBoxes; // world coordinate AABoxes for all sub mesh boxes
bool _calculatedMeshBoxesValid;
QVector< QVector<Triangle> > _calculatedMeshTriangles; // world coordinate triangles for all sub meshes
bool _calculatedMeshTrianglesValid;
QMutex _mutex;
void recalculateMeshBoxes(bool pickAgainstTriangles = false);
void segregateMeshGroups(); // used to calculate our list of translucent vs opaque meshes
bool _meshGroupsKnown;
bool _isWireframe;
// debug rendering support
void renderDebugMeshBoxes();
int _debugMeshBoxesID = GeometryCache::UNKNOWN_ID;
// helper functions used by render() or renderInScene()
bool renderCore(RenderArgs* args, float alpha);
int renderMeshes(gpu::Batch& batch, RenderArgs::RenderMode mode, bool translucent, float alphaThreshold,
bool hasLightmap, bool hasTangents, bool hasSpecular, bool isSkinned, bool isWireframe, RenderArgs* args = NULL,
bool forceRenderMeshes = false);
void setupBatchTransform(gpu::Batch& batch, RenderArgs* args);
QVector<int>* pickMeshList(bool translucent, float alphaThreshold, bool hasLightmap, bool hasTangents, bool hasSpecular, bool isSkinned, bool isWireframe);
int renderMeshesFromList(QVector<int>& list, gpu::Batch& batch, RenderArgs::RenderMode mode, bool translucent, float alphaThreshold,
RenderArgs* args, Locations* locations,
bool forceRenderSomeMeshes = false);
static void pickPrograms(gpu::Batch& batch, RenderArgs::RenderMode mode, bool translucent, float alphaThreshold,
bool hasLightmap, bool hasTangents, bool hasSpecular, bool isSkinned, bool isWireframe, RenderArgs* args,
Locations*& locations);
static AbstractViewStateInterface* _viewState;
class RenderKey {
public:
enum FlagBit {
IS_TRANSLUCENT_FLAG = 0,
HAS_LIGHTMAP_FLAG,
HAS_TANGENTS_FLAG,
HAS_SPECULAR_FLAG,
HAS_EMISSIVE_FLAG,
IS_SKINNED_FLAG,
IS_STEREO_FLAG,
IS_DEPTH_ONLY_FLAG,
IS_SHADOW_FLAG,
IS_MIRROR_FLAG, //THis means that the mesh is rendered mirrored, not the same as "Rear view mirror"
IS_WIREFRAME_FLAG,
NUM_FLAGS,
};
enum Flag {
IS_TRANSLUCENT = (1 << IS_TRANSLUCENT_FLAG),
HAS_LIGHTMAP = (1 << HAS_LIGHTMAP_FLAG),
HAS_TANGENTS = (1 << HAS_TANGENTS_FLAG),
HAS_SPECULAR = (1 << HAS_SPECULAR_FLAG),
HAS_EMISSIVE = (1 << HAS_EMISSIVE_FLAG),
IS_SKINNED = (1 << IS_SKINNED_FLAG),
IS_STEREO = (1 << IS_STEREO_FLAG),
IS_DEPTH_ONLY = (1 << IS_DEPTH_ONLY_FLAG),
IS_SHADOW = (1 << IS_SHADOW_FLAG),
IS_MIRROR = (1 << IS_MIRROR_FLAG),
IS_WIREFRAME = (1 << IS_WIREFRAME_FLAG),
};
typedef unsigned short Flags;
bool isFlag(short flagNum) const { return bool((_flags & flagNum) != 0); }
bool isTranslucent() const { return isFlag(IS_TRANSLUCENT); }
bool hasLightmap() const { return isFlag(HAS_LIGHTMAP); }
bool hasTangents() const { return isFlag(HAS_TANGENTS); }
bool hasSpecular() const { return isFlag(HAS_SPECULAR); }
bool hasEmissive() const { return isFlag(HAS_EMISSIVE); }
bool isSkinned() const { return isFlag(IS_SKINNED); }
bool isStereo() const { return isFlag(IS_STEREO); }
bool isDepthOnly() const { return isFlag(IS_DEPTH_ONLY); }
bool isShadow() const { return isFlag(IS_SHADOW); } // = depth only but with back facing
bool isMirror() const { return isFlag(IS_MIRROR); }
bool isWireFrame() const { return isFlag(IS_WIREFRAME); }
Flags _flags = 0;
short _spare = 0;
int getRaw() { return *reinterpret_cast<int*>(this); }
RenderKey(
bool translucent, bool hasLightmap,
bool hasTangents, bool hasSpecular, bool isSkinned, bool isWireframe) :
RenderKey( (translucent ? IS_TRANSLUCENT : 0)
| (hasLightmap ? HAS_LIGHTMAP : 0)
| (hasTangents ? HAS_TANGENTS : 0)
| (hasSpecular ? HAS_SPECULAR : 0)
| (isSkinned ? IS_SKINNED : 0)
| (isWireframe ? IS_WIREFRAME : 0)
) {}
RenderKey(RenderArgs::RenderMode mode,
bool translucent, float alphaThreshold, bool hasLightmap,
bool hasTangents, bool hasSpecular, bool isSkinned, bool isWireframe) :
RenderKey( ((translucent && (alphaThreshold == 0.0f) && (mode != RenderArgs::SHADOW_RENDER_MODE)) ? IS_TRANSLUCENT : 0)
| (hasLightmap && (mode != RenderArgs::SHADOW_RENDER_MODE) ? HAS_LIGHTMAP : 0) // Lightmap, tangents and specular don't matter for depthOnly
| (hasTangents && (mode != RenderArgs::SHADOW_RENDER_MODE) ? HAS_TANGENTS : 0)
| (hasSpecular && (mode != RenderArgs::SHADOW_RENDER_MODE) ? HAS_SPECULAR : 0)
| (isSkinned ? IS_SKINNED : 0)
| (isWireframe ? IS_WIREFRAME : 0)
| ((mode == RenderArgs::SHADOW_RENDER_MODE) ? IS_DEPTH_ONLY : 0)
| ((mode == RenderArgs::SHADOW_RENDER_MODE) ? IS_SHADOW : 0)
| ((mode == RenderArgs::MIRROR_RENDER_MODE) ? IS_MIRROR :0)
) {}
RenderKey(int bitmask) : _flags(bitmask) {}
};
class RenderPipeline {
public:
gpu::PipelinePointer _pipeline;
std::shared_ptr<Locations> _locations;
RenderPipeline(gpu::PipelinePointer pipeline, std::shared_ptr<Locations> locations) :
_pipeline(pipeline), _locations(locations) {}
};
typedef std::unordered_map<int, RenderPipeline> BaseRenderPipelineMap;
class RenderPipelineLib : public BaseRenderPipelineMap {
public:
typedef RenderKey Key;
void addRenderPipeline(Key key, gpu::ShaderPointer& vertexShader, gpu::ShaderPointer& pixelShader);
void initLocations(gpu::ShaderPointer& program, Locations& locations);
};
static RenderPipelineLib _renderPipelineLib;
class RenderBucket {
public:
QVector<int> _meshes;
QMap<QString, int> _unsortedMeshes;
};
typedef std::unordered_map<int, RenderBucket> BaseRenderBucketMap;
class RenderBucketMap : public BaseRenderBucketMap {
public:
typedef RenderKey Key;
};
RenderBucketMap _renderBuckets;
bool _renderCollisionHull;
QSet<std::shared_ptr<TransparentMeshPart>> _transparentRenderItems;
QSet<std::shared_ptr<OpaqueMeshPart>> _opaqueRenderItems;
QMap<render::ItemID, render::PayloadPointer> _renderItems;
bool _readyWhenAdded = false;
bool _needsReload = true;
private:
// FIX ME - We want to get rid of this interface for rendering...
// right now the only remaining user are Avatar attachments.
// that usage has been temporarily disabled...
bool render(RenderArgs* renderArgs, float alpha = 1.0f);
};
Q_DECLARE_METATYPE(QPointer<Model>)
Q_DECLARE_METATYPE(QWeakPointer<NetworkGeometry>)
/// Handle management of pending models that need blending
class ModelBlender : public QObject, public Dependency {
Q_OBJECT
SINGLETON_DEPENDENCY
public:
/// Adds the specified model to the list requiring vertex blends.
void noteRequiresBlend(Model* model);
public slots:
void setBlendedVertices(const QPointer<Model>& model, int blendNumber, const QWeakPointer<NetworkGeometry>& geometry,
const QVector<glm::vec3>& vertices, const QVector<glm::vec3>& normals);
private:
ModelBlender();
virtual ~ModelBlender();
QList<QPointer<Model> > _modelsRequiringBlends;
int _pendingBlenders;
};
#endif // hifi_Model_h