overte/interface/src/renderer/GeometryCache.cpp
2014-11-12 09:47:18 -08:00

1033 lines
42 KiB
C++

//
// GeometryCache.cpp
// interface/src/renderer
//
// Created by Andrzej Kapolka on 6/21/13.
// Copyright 2013 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include <cmath>
#include <QNetworkReply>
#include <QRunnable>
#include <QThreadPool>
#include "Application.h"
#include "GeometryCache.h"
#include "Model.h"
#include "world.h"
GeometryCache::GeometryCache() :
_pendingBlenders(0) {
}
GeometryCache::~GeometryCache() {
foreach (const VerticesIndices& vbo, _hemisphereVBOs) {
glDeleteBuffers(1, &vbo.first);
glDeleteBuffers(1, &vbo.second);
}
}
void GeometryCache::renderHemisphere(int slices, int stacks) {
VerticesIndices& vbo = _hemisphereVBOs[IntPair(slices, stacks)];
int vertices = slices * (stacks - 1) + 1;
int indices = slices * 2 * 3 * (stacks - 2) + slices * 3;
if (vbo.first == 0) {
GLfloat* vertexData = new GLfloat[vertices * 3];
GLfloat* vertex = vertexData;
for (int i = 0; i < stacks - 1; i++) {
float phi = PI_OVER_TWO * (float)i / (float)(stacks - 1);
float z = sinf(phi), radius = cosf(phi);
for (int j = 0; j < slices; j++) {
float theta = TWO_PI * (float)j / (float)slices;
*(vertex++) = sinf(theta) * radius;
*(vertex++) = cosf(theta) * radius;
*(vertex++) = z;
}
}
*(vertex++) = 0.0f;
*(vertex++) = 0.0f;
*(vertex++) = 1.0f;
glGenBuffers(1, &vbo.first);
glBindBuffer(GL_ARRAY_BUFFER, vbo.first);
const int BYTES_PER_VERTEX = 3 * sizeof(GLfloat);
glBufferData(GL_ARRAY_BUFFER, vertices * BYTES_PER_VERTEX, vertexData, GL_STATIC_DRAW);
delete[] vertexData;
GLushort* indexData = new GLushort[indices];
GLushort* index = indexData;
for (int i = 0; i < stacks - 2; i++) {
GLushort bottom = i * slices;
GLushort top = bottom + slices;
for (int j = 0; j < slices; j++) {
int next = (j + 1) % slices;
*(index++) = bottom + j;
*(index++) = top + next;
*(index++) = top + j;
*(index++) = bottom + j;
*(index++) = bottom + next;
*(index++) = top + next;
}
}
GLushort bottom = (stacks - 2) * slices;
GLushort top = bottom + slices;
for (int i = 0; i < slices; i++) {
*(index++) = bottom + i;
*(index++) = bottom + (i + 1) % slices;
*(index++) = top;
}
glGenBuffers(1, &vbo.second);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vbo.second);
const int BYTES_PER_INDEX = sizeof(GLushort);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices * BYTES_PER_INDEX, indexData, GL_STATIC_DRAW);
delete[] indexData;
} else {
glBindBuffer(GL_ARRAY_BUFFER, vbo.first);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vbo.second);
}
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_NORMAL_ARRAY);
glVertexPointer(3, GL_FLOAT, 0, 0);
glNormalPointer(GL_FLOAT, 0, 0);
glDrawRangeElementsEXT(GL_TRIANGLES, 0, vertices - 1, indices, GL_UNSIGNED_SHORT, 0);
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_NORMAL_ARRAY);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
}
const int NUM_VERTICES_PER_TRIANGLE = 3;
const int NUM_TRIANGLES_PER_QUAD = 2;
const int NUM_VERTICES_PER_TRIANGULATED_QUAD = NUM_VERTICES_PER_TRIANGLE * NUM_TRIANGLES_PER_QUAD;
const int NUM_COORDS_PER_VERTEX = 3;
const int NUM_BYTES_PER_VERTEX = NUM_COORDS_PER_VERTEX * sizeof(GLfloat);
const int NUM_BYTES_PER_INDEX = sizeof(GLushort);
void GeometryCache::renderSphere(float radius, int slices, int stacks) {
VerticesIndices& vbo = _sphereVBOs[IntPair(slices, stacks)];
int vertices = slices * (stacks - 1) + 2;
int indices = slices * stacks * NUM_VERTICES_PER_TRIANGULATED_QUAD;
if (vbo.first == 0) {
GLfloat* vertexData = new GLfloat[vertices * NUM_COORDS_PER_VERTEX];
GLfloat* vertex = vertexData;
// south pole
*(vertex++) = 0.0f;
*(vertex++) = 0.0f;
*(vertex++) = -1.0f;
//add stacks vertices climbing up Y axis
for (int i = 1; i < stacks; i++) {
float phi = PI * (float)i / (float)(stacks) - PI_OVER_TWO;
float z = sinf(phi), radius = cosf(phi);
for (int j = 0; j < slices; j++) {
float theta = TWO_PI * (float)j / (float)slices;
*(vertex++) = sinf(theta) * radius;
*(vertex++) = cosf(theta) * radius;
*(vertex++) = z;
}
}
// north pole
*(vertex++) = 0.0f;
*(vertex++) = 0.0f;
*(vertex++) = 1.0f;
glGenBuffers(1, &vbo.first);
glBindBuffer(GL_ARRAY_BUFFER, vbo.first);
glBufferData(GL_ARRAY_BUFFER, vertices * NUM_BYTES_PER_VERTEX, vertexData, GL_STATIC_DRAW);
delete[] vertexData;
GLushort* indexData = new GLushort[indices];
GLushort* index = indexData;
// South cap
GLushort bottom = 0;
GLushort top = 1;
for (int i = 0; i < slices; i++) {
*(index++) = bottom;
*(index++) = top + i;
*(index++) = top + (i + 1) % slices;
}
// (stacks - 2) ribbons
for (int i = 0; i < stacks - 2; i++) {
bottom = i * slices + 1;
top = bottom + slices;
for (int j = 0; j < slices; j++) {
int next = (j + 1) % slices;
*(index++) = top + next;
*(index++) = bottom + j;
*(index++) = top + j;
*(index++) = bottom + next;
*(index++) = bottom + j;
*(index++) = top + next;
}
}
// north cap
bottom = (stacks - 2) * slices + 1;
top = bottom + slices;
for (int i = 0; i < slices; i++) {
*(index++) = bottom + (i + 1) % slices;
*(index++) = bottom + i;
*(index++) = top;
}
glGenBuffers(1, &vbo.second);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vbo.second);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices * NUM_BYTES_PER_INDEX, indexData, GL_STATIC_DRAW);
delete[] indexData;
} else {
glBindBuffer(GL_ARRAY_BUFFER, vbo.first);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vbo.second);
}
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_NORMAL_ARRAY);
glVertexPointer(3, GL_FLOAT, 0, 0);
glNormalPointer(GL_FLOAT, 0, 0);
glPushMatrix();
glScalef(radius, radius, radius);
glDrawRangeElementsEXT(GL_TRIANGLES, 0, vertices - 1, indices, GL_UNSIGNED_SHORT, 0);
glPopMatrix();
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_NORMAL_ARRAY);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
}
void GeometryCache::renderSquare(int xDivisions, int yDivisions) {
VerticesIndices& vbo = _squareVBOs[IntPair(xDivisions, yDivisions)];
int xVertices = xDivisions + 1;
int yVertices = yDivisions + 1;
int vertices = xVertices * yVertices;
int indices = 2 * 3 * xDivisions * yDivisions;
if (vbo.first == 0) {
GLfloat* vertexData = new GLfloat[vertices * 3];
GLfloat* vertex = vertexData;
for (int i = 0; i <= yDivisions; i++) {
float y = (float)i / yDivisions;
for (int j = 0; j <= xDivisions; j++) {
*(vertex++) = (float)j / xDivisions;
*(vertex++) = y;
*(vertex++) = 0.0f;
}
}
glGenBuffers(1, &vbo.first);
glBindBuffer(GL_ARRAY_BUFFER, vbo.first);
glBufferData(GL_ARRAY_BUFFER, vertices * NUM_BYTES_PER_VERTEX, vertexData, GL_STATIC_DRAW);
delete[] vertexData;
GLushort* indexData = new GLushort[indices];
GLushort* index = indexData;
for (int i = 0; i < yDivisions; i++) {
GLushort bottom = i * xVertices;
GLushort top = bottom + xVertices;
for (int j = 0; j < xDivisions; j++) {
int next = j + 1;
*(index++) = bottom + j;
*(index++) = top + next;
*(index++) = top + j;
*(index++) = bottom + j;
*(index++) = bottom + next;
*(index++) = top + next;
}
}
glGenBuffers(1, &vbo.second);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vbo.second);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices * NUM_BYTES_PER_INDEX, indexData, GL_STATIC_DRAW);
delete[] indexData;
} else {
glBindBuffer(GL_ARRAY_BUFFER, vbo.first);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vbo.second);
}
glEnableClientState(GL_VERTEX_ARRAY);
// all vertices have the same normal
glNormal3f(0.0f, 0.0f, 1.0f);
glVertexPointer(3, GL_FLOAT, 0, 0);
glDrawRangeElementsEXT(GL_TRIANGLES, 0, vertices - 1, indices, GL_UNSIGNED_SHORT, 0);
glDisableClientState(GL_VERTEX_ARRAY);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
}
void GeometryCache::renderHalfCylinder(int slices, int stacks) {
VerticesIndices& vbo = _halfCylinderVBOs[IntPair(slices, stacks)];
int vertices = (slices + 1) * stacks;
int indices = 2 * 3 * slices * (stacks - 1);
if (vbo.first == 0) {
GLfloat* vertexData = new GLfloat[vertices * 2 * 3];
GLfloat* vertex = vertexData;
for (int i = 0; i <= (stacks - 1); i++) {
float y = (float)i / (stacks - 1);
for (int j = 0; j <= slices; j++) {
float theta = 3.f * PI_OVER_TWO + PI * (float)j / (float)slices;
//normals
*(vertex++) = sinf(theta);
*(vertex++) = 0;
*(vertex++) = cosf(theta);
// vertices
*(vertex++) = sinf(theta);
*(vertex++) = y;
*(vertex++) = cosf(theta);
}
}
glGenBuffers(1, &vbo.first);
glBindBuffer(GL_ARRAY_BUFFER, vbo.first);
glBufferData(GL_ARRAY_BUFFER, 2 * vertices * NUM_BYTES_PER_VERTEX, vertexData, GL_STATIC_DRAW);
delete[] vertexData;
GLushort* indexData = new GLushort[indices];
GLushort* index = indexData;
for (int i = 0; i < stacks - 1; i++) {
GLushort bottom = i * (slices + 1);
GLushort top = bottom + slices + 1;
for (int j = 0; j < slices; j++) {
int next = j + 1;
*(index++) = bottom + j;
*(index++) = top + next;
*(index++) = top + j;
*(index++) = bottom + j;
*(index++) = bottom + next;
*(index++) = top + next;
}
}
glGenBuffers(1, &vbo.second);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vbo.second);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices * NUM_BYTES_PER_INDEX, indexData, GL_STATIC_DRAW);
delete[] indexData;
} else {
glBindBuffer(GL_ARRAY_BUFFER, vbo.first);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vbo.second);
}
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_NORMAL_ARRAY);
glNormalPointer(GL_FLOAT, 6 * sizeof(float), 0);
glVertexPointer(3, GL_FLOAT, (6 * sizeof(float)), (const void *)(3 * sizeof(float)));
glDrawRangeElementsEXT(GL_TRIANGLES, 0, vertices - 1, indices, GL_UNSIGNED_SHORT, 0);
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_NORMAL_ARRAY);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
}
void GeometryCache::renderCone(float base, float height, int slices, int stacks) {
VerticesIndices& vbo = _halfCylinderVBOs[IntPair(slices, stacks)];
int vertices = (stacks + 2) * slices;
int baseTriangles = slices - 2;
int indices = NUM_VERTICES_PER_TRIANGULATED_QUAD * slices * stacks + NUM_VERTICES_PER_TRIANGLE * baseTriangles;
if (vbo.first == 0) {
GLfloat* vertexData = new GLfloat[vertices * NUM_COORDS_PER_VERTEX * 2];
GLfloat* vertex = vertexData;
// cap
for (int i = 0; i < slices; i++) {
float theta = TWO_PI * i / slices;
//normals
*(vertex++) = 0.0f;
*(vertex++) = 0.0f;
*(vertex++) = -1.0f;
// vertices
*(vertex++) = cosf(theta);
*(vertex++) = sinf(theta);
*(vertex++) = 0.0f;
}
// body
for (int i = 0; i <= stacks; i++) {
float z = (float)i / stacks;
float radius = 1.0f - z;
for (int j = 0; j < slices; j++) {
float theta = TWO_PI * j / slices;
//normals
*(vertex++) = cosf(theta) / SQUARE_ROOT_OF_2;
*(vertex++) = sinf(theta) / SQUARE_ROOT_OF_2;
*(vertex++) = 1.0f / SQUARE_ROOT_OF_2;
// vertices
*(vertex++) = radius * cosf(theta);
*(vertex++) = radius * sinf(theta);
*(vertex++) = z;
}
}
glGenBuffers(1, &vbo.first);
glBindBuffer(GL_ARRAY_BUFFER, vbo.first);
glBufferData(GL_ARRAY_BUFFER, 2 * vertices * NUM_BYTES_PER_VERTEX, vertexData, GL_STATIC_DRAW);
delete[] vertexData;
GLushort* indexData = new GLushort[indices];
GLushort* index = indexData;
for (int i = 0; i < baseTriangles; i++) {
*(index++) = 0;
*(index++) = i + 2;
*(index++) = i + 1;
}
for (int i = 1; i <= stacks; i++) {
GLushort bottom = i * slices;
GLushort top = bottom + slices;
for (int j = 0; j < slices; j++) {
int next = (j + 1) % slices;
*(index++) = bottom + j;
*(index++) = top + next;
*(index++) = top + j;
*(index++) = bottom + j;
*(index++) = bottom + next;
*(index++) = top + next;
}
}
glGenBuffers(1, &vbo.second);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vbo.second);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices * NUM_BYTES_PER_INDEX, indexData, GL_STATIC_DRAW);
delete[] indexData;
} else {
glBindBuffer(GL_ARRAY_BUFFER, vbo.first);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vbo.second);
}
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_NORMAL_ARRAY);
int stride = NUM_VERTICES_PER_TRIANGULATED_QUAD * sizeof(float);
glNormalPointer(GL_FLOAT, stride, 0);
glVertexPointer(NUM_COORDS_PER_VERTEX, GL_FLOAT, stride, (const void *)(NUM_COORDS_PER_VERTEX * sizeof(float)));
glPushMatrix();
glScalef(base, base, height);
glDrawRangeElementsEXT(GL_TRIANGLES, 0, vertices - 1, indices, GL_UNSIGNED_SHORT, 0);
glPopMatrix();
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_NORMAL_ARRAY);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
}
void GeometryCache::renderGrid(int xDivisions, int yDivisions) {
QOpenGLBuffer& buffer = _gridBuffers[IntPair(xDivisions, yDivisions)];
int vertices = (xDivisions + 1 + yDivisions + 1) * 2;
if (!buffer.isCreated()) {
GLfloat* vertexData = new GLfloat[vertices * 2];
GLfloat* vertex = vertexData;
for (int i = 0; i <= xDivisions; i++) {
float x = (float)i / xDivisions;
*(vertex++) = x;
*(vertex++) = 0.0f;
*(vertex++) = x;
*(vertex++) = 1.0f;
}
for (int i = 0; i <= yDivisions; i++) {
float y = (float)i / yDivisions;
*(vertex++) = 0.0f;
*(vertex++) = y;
*(vertex++) = 1.0f;
*(vertex++) = y;
}
buffer.create();
buffer.setUsagePattern(QOpenGLBuffer::StaticDraw);
buffer.bind();
buffer.allocate(vertexData, vertices * 2 * sizeof(GLfloat));
delete[] vertexData;
} else {
buffer.bind();
}
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(2, GL_FLOAT, 0, 0);
glDrawArrays(GL_LINES, 0, vertices);
glDisableClientState(GL_VERTEX_ARRAY);
buffer.release();
}
QSharedPointer<NetworkGeometry> GeometryCache::getGeometry(const QUrl& url, const QUrl& fallback, bool delayLoad) {
return getResource(url, fallback, delayLoad).staticCast<NetworkGeometry>();
}
void GeometryCache::noteRequiresBlend(Model* model) {
if (_pendingBlenders < QThread::idealThreadCount()) {
if (model->maybeStartBlender()) {
_pendingBlenders++;
}
return;
}
if (!_modelsRequiringBlends.contains(model)) {
_modelsRequiringBlends.append(model);
}
}
void GeometryCache::setBlendedVertices(const QPointer<Model>& model, int blendNumber,
const QWeakPointer<NetworkGeometry>& geometry, const QVector<glm::vec3>& vertices, const QVector<glm::vec3>& normals) {
if (!model.isNull()) {
model->setBlendedVertices(blendNumber, geometry, vertices, normals);
}
_pendingBlenders--;
while (!_modelsRequiringBlends.isEmpty()) {
Model* nextModel = _modelsRequiringBlends.takeFirst();
if (nextModel && nextModel->maybeStartBlender()) {
_pendingBlenders++;
return;
}
}
}
QSharedPointer<Resource> GeometryCache::createResource(const QUrl& url,
const QSharedPointer<Resource>& fallback, bool delayLoad, const void* extra) {
QSharedPointer<NetworkGeometry> geometry(new NetworkGeometry(url, fallback.staticCast<NetworkGeometry>(), delayLoad),
&Resource::allReferencesCleared);
geometry->setLODParent(geometry);
return geometry.staticCast<Resource>();
}
const float NetworkGeometry::NO_HYSTERESIS = -1.0f;
NetworkGeometry::NetworkGeometry(const QUrl& url, const QSharedPointer<NetworkGeometry>& fallback, bool delayLoad,
const QVariantHash& mapping, const QUrl& textureBase) :
Resource(url, delayLoad),
_mapping(mapping),
_textureBase(textureBase.isValid() ? textureBase : url),
_fallback(fallback)
{
if (url.isEmpty()) {
// make the minimal amount of dummy geometry to satisfy Model
FBXJoint joint = { false, QVector<int>(), -1 };
_geometry.joints.append(joint);
_geometry.leftEyeJointIndex = -1;
_geometry.rightEyeJointIndex = -1;
_geometry.neckJointIndex = -1;
_geometry.rootJointIndex = -1;
_geometry.leanJointIndex = -1;
_geometry.headJointIndex = -1;
_geometry.leftHandJointIndex = -1;
_geometry.rightHandJointIndex = -1;
}
connect(this, &Resource::loaded, this, &NetworkGeometry::replaceTexturesWithPendingChanges);
}
bool NetworkGeometry::isLoadedWithTextures() const {
if (!isLoaded()) {
return false;
}
foreach (const NetworkMesh& mesh, _meshes) {
foreach (const NetworkMeshPart& part, mesh.parts) {
if ((part.diffuseTexture && !part.diffuseTexture->isLoaded()) ||
(part.normalTexture && !part.normalTexture->isLoaded()) ||
(part.specularTexture && !part.specularTexture->isLoaded())) {
return false;
}
}
}
return true;
}
QSharedPointer<NetworkGeometry> NetworkGeometry::getLODOrFallback(float distance, float& hysteresis, bool delayLoad) const {
if (_lodParent.data() != this) {
return _lodParent.data()->getLODOrFallback(distance, hysteresis, delayLoad);
}
if (_failedToLoad && _fallback) {
return _fallback;
}
QSharedPointer<NetworkGeometry> lod = _lodParent;
float lodDistance = 0.0f;
QMap<float, QSharedPointer<NetworkGeometry> >::const_iterator it = _lods.upperBound(distance);
if (it != _lods.constBegin()) {
it = it - 1;
lod = it.value();
lodDistance = it.key();
}
if (hysteresis != NO_HYSTERESIS && hysteresis != lodDistance) {
// if we previously selected a different distance, make sure we've moved far enough to justify switching
const float HYSTERESIS_PROPORTION = 0.1f;
if (glm::abs(distance - qMax(hysteresis, lodDistance)) / fabsf(hysteresis - lodDistance) < HYSTERESIS_PROPORTION) {
lod = _lodParent;
lodDistance = 0.0f;
it = _lods.upperBound(hysteresis);
if (it != _lods.constBegin()) {
it = it - 1;
lod = it.value();
lodDistance = it.key();
}
}
}
if (lod->isLoaded()) {
hysteresis = lodDistance;
return lod;
}
// if the ideal LOD isn't loaded, we need to make sure it's started to load, and possibly return the closest loaded one
if (!delayLoad) {
lod->ensureLoading();
}
float closestDistance = FLT_MAX;
if (isLoaded()) {
lod = _lodParent;
closestDistance = distance;
}
for (it = _lods.constBegin(); it != _lods.constEnd(); it++) {
float distanceToLOD = glm::abs(distance - it.key());
if (it.value()->isLoaded() && distanceToLOD < closestDistance) {
lod = it.value();
closestDistance = distanceToLOD;
}
}
hysteresis = NO_HYSTERESIS;
return lod;
}
uint qHash(const QWeakPointer<Animation>& animation, uint seed = 0) {
return qHash(animation.data(), seed);
}
QVector<int> NetworkGeometry::getJointMappings(const AnimationPointer& animation) {
QVector<int> mappings = _jointMappings.value(animation);
if (mappings.isEmpty() && isLoaded() && animation && animation->isLoaded()) {
const FBXGeometry& animationGeometry = animation->getGeometry();
for (int i = 0; i < animationGeometry.joints.size(); i++) {
mappings.append(_geometry.jointIndices.value(animationGeometry.joints.at(i).name) - 1);
}
_jointMappings.insert(animation, mappings);
}
return mappings;
}
void NetworkGeometry::setLoadPriority(const QPointer<QObject>& owner, float priority) {
Resource::setLoadPriority(owner, priority);
for (int i = 0; i < _meshes.size(); i++) {
NetworkMesh& mesh = _meshes[i];
for (int j = 0; j < mesh.parts.size(); j++) {
NetworkMeshPart& part = mesh.parts[j];
if (part.diffuseTexture) {
part.diffuseTexture->setLoadPriority(owner, priority);
}
if (part.normalTexture) {
part.normalTexture->setLoadPriority(owner, priority);
}
if (part.specularTexture) {
part.specularTexture->setLoadPriority(owner, priority);
}
}
}
}
void NetworkGeometry::setLoadPriorities(const QHash<QPointer<QObject>, float>& priorities) {
Resource::setLoadPriorities(priorities);
for (int i = 0; i < _meshes.size(); i++) {
NetworkMesh& mesh = _meshes[i];
for (int j = 0; j < mesh.parts.size(); j++) {
NetworkMeshPart& part = mesh.parts[j];
if (part.diffuseTexture) {
part.diffuseTexture->setLoadPriorities(priorities);
}
if (part.normalTexture) {
part.normalTexture->setLoadPriorities(priorities);
}
if (part.specularTexture) {
part.specularTexture->setLoadPriorities(priorities);
}
}
}
}
void NetworkGeometry::clearLoadPriority(const QPointer<QObject>& owner) {
Resource::clearLoadPriority(owner);
for (int i = 0; i < _meshes.size(); i++) {
NetworkMesh& mesh = _meshes[i];
for (int j = 0; j < mesh.parts.size(); j++) {
NetworkMeshPart& part = mesh.parts[j];
if (part.diffuseTexture) {
part.diffuseTexture->clearLoadPriority(owner);
}
if (part.normalTexture) {
part.normalTexture->clearLoadPriority(owner);
}
if (part.specularTexture) {
part.specularTexture->clearLoadPriority(owner);
}
}
}
}
void NetworkGeometry::setTextureWithNameToURL(const QString& name, const QUrl& url) {
if (_meshes.size() > 0) {
for (int i = 0; i < _meshes.size(); i++) {
NetworkMesh& mesh = _meshes[i];
for (int j = 0; j < mesh.parts.size(); j++) {
NetworkMeshPart& part = mesh.parts[j];
QSharedPointer<NetworkTexture> matchingTexture = QSharedPointer<NetworkTexture>();
if (part.diffuseTextureName == name) {
part.diffuseTexture =
Application::getInstance()->getTextureCache()->getTexture(url, DEFAULT_TEXTURE,
_geometry.meshes[i].isEye, QByteArray());
part.diffuseTexture->setLoadPriorities(_loadPriorities);
} else if (part.normalTextureName == name) {
part.normalTexture = Application::getInstance()->getTextureCache()->getTexture(url, DEFAULT_TEXTURE,
false, QByteArray());
part.normalTexture->setLoadPriorities(_loadPriorities);
} else if (part.specularTextureName == name) {
part.specularTexture = Application::getInstance()->getTextureCache()->getTexture(url, DEFAULT_TEXTURE,
false, QByteArray());
part.specularTexture->setLoadPriorities(_loadPriorities);
}
}
}
} else {
qDebug() << "Adding a name url pair to pending" << name << url;
// we don't have meshes downloaded yet, so hold this texture as pending
_pendingTextureChanges.insert(name, url);
}
}
QStringList NetworkGeometry::getTextureNames() const {
QStringList result;
for (int i = 0; i < _meshes.size(); i++) {
const NetworkMesh& mesh = _meshes[i];
for (int j = 0; j < mesh.parts.size(); j++) {
const NetworkMeshPart& part = mesh.parts[j];
if (!part.diffuseTextureName.isEmpty()) {
QString textureURL = part.diffuseTexture->getURL().toString();
result << part.diffuseTextureName + ":" + textureURL;
}
if (!part.normalTextureName.isEmpty()) {
QString textureURL = part.normalTexture->getURL().toString();
result << part.normalTextureName + ":" + textureURL;
}
if (!part.specularTextureName.isEmpty()) {
QString textureURL = part.specularTexture->getURL().toString();
result << part.specularTextureName + ":" + textureURL;
}
}
}
return result;
}
void NetworkGeometry::replaceTexturesWithPendingChanges() {
QHash<QString, QUrl>::Iterator it = _pendingTextureChanges.begin();
while (it != _pendingTextureChanges.end()) {
setTextureWithNameToURL(it.key(), it.value());
it = _pendingTextureChanges.erase(it);
}
}
/// Reads geometry in a worker thread.
class GeometryReader : public QRunnable {
public:
GeometryReader(const QWeakPointer<Resource>& geometry, const QUrl& url,
QNetworkReply* reply, const QVariantHash& mapping);
virtual void run();
private:
QWeakPointer<Resource> _geometry;
QUrl _url;
QNetworkReply* _reply;
QVariantHash _mapping;
};
GeometryReader::GeometryReader(const QWeakPointer<Resource>& geometry, const QUrl& url,
QNetworkReply* reply, const QVariantHash& mapping) :
_geometry(geometry),
_url(url),
_reply(reply),
_mapping(mapping) {
}
void GeometryReader::run() {
QSharedPointer<Resource> geometry = _geometry.toStrongRef();
if (geometry.isNull()) {
_reply->deleteLater();
return;
}
try {
QMetaObject::invokeMethod(geometry.data(), "setGeometry", Q_ARG(const FBXGeometry&,
_url.path().toLower().endsWith(".svo") ? readSVO(_reply->readAll()) : readFBX(_reply->readAll(), _mapping)));
} catch (const QString& error) {
qDebug() << "Error reading " << _url << ": " << error;
QMetaObject::invokeMethod(geometry.data(), "finishedLoading", Q_ARG(bool, false));
}
_reply->deleteLater();
}
void NetworkGeometry::init() {
_mapping = QVariantHash();
_geometry = FBXGeometry();
_meshes.clear();
_lods.clear();
_pendingTextureChanges.clear();
_request.setUrl(_url);
Resource::init();
}
void NetworkGeometry::downloadFinished(QNetworkReply* reply) {
QUrl url = reply->url();
if (url.path().toLower().endsWith(".fst")) {
// it's a mapping file; parse it and get the mesh filename
_mapping = readMapping(reply->readAll());
reply->deleteLater();
QString filename = _mapping.value("filename").toString();
if (filename.isNull()) {
qDebug() << "Mapping file " << url << " has no filename.";
finishedLoading(false);
} else {
QString texdir = _mapping.value("texdir").toString();
if (!texdir.isNull()) {
if (!texdir.endsWith('/')) {
texdir += '/';
}
_textureBase = url.resolved(texdir);
}
QVariantHash lods = _mapping.value("lod").toHash();
for (QVariantHash::const_iterator it = lods.begin(); it != lods.end(); it++) {
QSharedPointer<NetworkGeometry> geometry(new NetworkGeometry(url.resolved(it.key()),
QSharedPointer<NetworkGeometry>(), true, _mapping, _textureBase));
geometry->setSelf(geometry.staticCast<Resource>());
geometry->setLODParent(_lodParent);
_lods.insert(it.value().toFloat(), geometry);
}
_request.setUrl(url.resolved(filename));
// make the request immediately only if we have no LODs to switch between
_startedLoading = false;
if (_lods.isEmpty()) {
attemptRequest();
}
}
return;
}
// send the reader off to the thread pool
QThreadPool::globalInstance()->start(new GeometryReader(_self, url, reply, _mapping));
}
void NetworkGeometry::reinsert() {
Resource::reinsert();
_lodParent = qWeakPointerCast<NetworkGeometry, Resource>(_self);
foreach (const QSharedPointer<NetworkGeometry>& lod, _lods) {
lod->setLODParent(_lodParent);
}
}
void NetworkGeometry::setGeometry(const FBXGeometry& geometry) {
_geometry = geometry;
foreach (const FBXMesh& mesh, _geometry.meshes) {
NetworkMesh networkMesh;
int totalIndices = 0;
foreach (const FBXMeshPart& part, mesh.parts) {
NetworkMeshPart networkPart;
if (!part.diffuseTexture.filename.isEmpty()) {
networkPart.diffuseTexture = Application::getInstance()->getTextureCache()->getTexture(
_textureBase.resolved(QUrl(part.diffuseTexture.filename)), DEFAULT_TEXTURE,
mesh.isEye, part.diffuseTexture.content);
networkPart.diffuseTextureName = part.diffuseTexture.name;
networkPart.diffuseTexture->setLoadPriorities(_loadPriorities);
}
if (!part.normalTexture.filename.isEmpty()) {
networkPart.normalTexture = Application::getInstance()->getTextureCache()->getTexture(
_textureBase.resolved(QUrl(part.normalTexture.filename)), NORMAL_TEXTURE,
false, part.normalTexture.content);
networkPart.normalTextureName = part.normalTexture.name;
networkPart.normalTexture->setLoadPriorities(_loadPriorities);
}
if (!part.specularTexture.filename.isEmpty()) {
networkPart.specularTexture = Application::getInstance()->getTextureCache()->getTexture(
_textureBase.resolved(QUrl(part.specularTexture.filename)), SPECULAR_TEXTURE,
false, part.specularTexture.content);
networkPart.specularTextureName = part.specularTexture.name;
networkPart.specularTexture->setLoadPriorities(_loadPriorities);
}
networkMesh.parts.append(networkPart);
totalIndices += (part.quadIndices.size() + part.triangleIndices.size());
}
{
networkMesh._indexBuffer = gpu::BufferPointer(new gpu::Buffer());
networkMesh._indexBuffer->resize(totalIndices * sizeof(int));
int offset = 0;
foreach(const FBXMeshPart& part, mesh.parts) {
networkMesh._indexBuffer->setSubData(offset, part.quadIndices.size() * sizeof(int),
(gpu::Resource::Byte*) part.quadIndices.constData());
offset += part.quadIndices.size() * sizeof(int);
networkMesh._indexBuffer->setSubData(offset, part.triangleIndices.size() * sizeof(int),
(gpu::Resource::Byte*) part.triangleIndices.constData());
offset += part.triangleIndices.size() * sizeof(int);
}
}
{
networkMesh._vertexBuffer = gpu::BufferPointer(new gpu::Buffer());
// if we don't need to do any blending, the positions/normals can be static
if (mesh.blendshapes.isEmpty()) {
int normalsOffset = mesh.vertices.size() * sizeof(glm::vec3);
int tangentsOffset = normalsOffset + mesh.normals.size() * sizeof(glm::vec3);
int colorsOffset = tangentsOffset + mesh.tangents.size() * sizeof(glm::vec3);
int texCoordsOffset = colorsOffset + mesh.colors.size() * sizeof(glm::vec3);
int clusterIndicesOffset = texCoordsOffset + mesh.texCoords.size() * sizeof(glm::vec2);
int clusterWeightsOffset = clusterIndicesOffset + mesh.clusterIndices.size() * sizeof(glm::vec4);
networkMesh._vertexBuffer->resize(clusterWeightsOffset + mesh.clusterWeights.size() * sizeof(glm::vec4));
//networkMesh.vertexBuffer.allocate(clusterWeightsOffset + mesh.clusterWeights.size() * sizeof(glm::vec4));
networkMesh._vertexBuffer->setSubData(0, mesh.vertices.size() * sizeof(glm::vec3), (gpu::Resource::Byte*) mesh.vertices.constData());
networkMesh._vertexBuffer->setSubData(normalsOffset, mesh.normals.size() * sizeof(glm::vec3), (gpu::Resource::Byte*) mesh.normals.constData());
networkMesh._vertexBuffer->setSubData(tangentsOffset,
mesh.tangents.size() * sizeof(glm::vec3), (gpu::Resource::Byte*) mesh.tangents.constData());
networkMesh._vertexBuffer->setSubData(colorsOffset, mesh.colors.size() * sizeof(glm::vec3), (gpu::Resource::Byte*) mesh.colors.constData());
networkMesh._vertexBuffer->setSubData(texCoordsOffset,
mesh.texCoords.size() * sizeof(glm::vec2), (gpu::Resource::Byte*) mesh.texCoords.constData());
networkMesh._vertexBuffer->setSubData(clusterIndicesOffset,
mesh.clusterIndices.size() * sizeof(glm::vec4), (gpu::Resource::Byte*) mesh.clusterIndices.constData());
networkMesh._vertexBuffer->setSubData(clusterWeightsOffset,
mesh.clusterWeights.size() * sizeof(glm::vec4), (gpu::Resource::Byte*) mesh.clusterWeights.constData());
// otherwise, at least the cluster indices/weights can be static
networkMesh._vertexStream = gpu::BufferStreamPointer(new gpu::BufferStream());
networkMesh._vertexStream->addBuffer(networkMesh._vertexBuffer, 0, sizeof(glm::vec3));
if (mesh.normals.size()) networkMesh._vertexStream->addBuffer(networkMesh._vertexBuffer, normalsOffset, sizeof(glm::vec3));
if (mesh.tangents.size()) networkMesh._vertexStream->addBuffer(networkMesh._vertexBuffer, tangentsOffset, sizeof(glm::vec3));
if (mesh.colors.size()) networkMesh._vertexStream->addBuffer(networkMesh._vertexBuffer, colorsOffset, sizeof(glm::vec3));
if (mesh.texCoords.size()) networkMesh._vertexStream->addBuffer(networkMesh._vertexBuffer, texCoordsOffset, sizeof(glm::vec2));
if (mesh.clusterIndices.size()) networkMesh._vertexStream->addBuffer(networkMesh._vertexBuffer, clusterIndicesOffset, sizeof(glm::vec4));
if (mesh.clusterWeights.size()) networkMesh._vertexStream->addBuffer(networkMesh._vertexBuffer, clusterWeightsOffset, sizeof(glm::vec4));
int channelNum = 0;
networkMesh._vertexFormat = gpu::Stream::FormatPointer(new gpu::Stream::Format());
networkMesh._vertexFormat->setAttribute(gpu::Stream::POSITION, channelNum++, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::POS_XYZ), 0);
if (mesh.normals.size()) networkMesh._vertexFormat->setAttribute(gpu::Stream::NORMAL, channelNum++, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::XYZ));
if (mesh.tangents.size()) networkMesh._vertexFormat->setAttribute(gpu::Stream::TANGENT, channelNum++, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::XYZ));
if (mesh.colors.size()) networkMesh._vertexFormat->setAttribute(gpu::Stream::COLOR, channelNum++, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::RGB));
if (mesh.texCoords.size()) networkMesh._vertexFormat->setAttribute(gpu::Stream::TEXCOORD, channelNum++, gpu::Element(gpu::VEC2, gpu::FLOAT, gpu::UV));
if (mesh.clusterIndices.size()) networkMesh._vertexFormat->setAttribute(gpu::Stream::SKIN_CLUSTER_INDEX, channelNum++, gpu::Element(gpu::VEC4, gpu::NFLOAT, gpu::XYZW));
if (mesh.clusterWeights.size()) networkMesh._vertexFormat->setAttribute(gpu::Stream::SKIN_CLUSTER_WEIGHT, channelNum++, gpu::Element(gpu::VEC4, gpu::NFLOAT, gpu::XYZW));
}
else {
int colorsOffset = mesh.tangents.size() * sizeof(glm::vec3);
int texCoordsOffset = colorsOffset + mesh.colors.size() * sizeof(glm::vec3);
int clusterIndicesOffset = texCoordsOffset + mesh.texCoords.size() * sizeof(glm::vec2);
int clusterWeightsOffset = clusterIndicesOffset + mesh.clusterIndices.size() * sizeof(glm::vec4);
networkMesh._vertexBuffer->resize(clusterWeightsOffset + mesh.clusterWeights.size() * sizeof(glm::vec4));
networkMesh._vertexBuffer->setSubData(0, mesh.tangents.size() * sizeof(glm::vec3), (gpu::Resource::Byte*) mesh.tangents.constData());
networkMesh._vertexBuffer->setSubData(colorsOffset, mesh.colors.size() * sizeof(glm::vec3), (gpu::Resource::Byte*) mesh.colors.constData());
networkMesh._vertexBuffer->setSubData(texCoordsOffset,
mesh.texCoords.size() * sizeof(glm::vec2), (gpu::Resource::Byte*) mesh.texCoords.constData());
networkMesh._vertexBuffer->setSubData(clusterIndicesOffset,
mesh.clusterIndices.size() * sizeof(glm::vec4), (gpu::Resource::Byte*) mesh.clusterIndices.constData());
networkMesh._vertexBuffer->setSubData(clusterWeightsOffset,
mesh.clusterWeights.size() * sizeof(glm::vec4), (gpu::Resource::Byte*) mesh.clusterWeights.constData());
networkMesh._vertexStream = gpu::BufferStreamPointer(new gpu::BufferStream());
if (mesh.tangents.size()) networkMesh._vertexStream->addBuffer(networkMesh._vertexBuffer, 0, sizeof(glm::vec3));
if (mesh.colors.size()) networkMesh._vertexStream->addBuffer(networkMesh._vertexBuffer, colorsOffset, sizeof(glm::vec3));
if (mesh.texCoords.size()) networkMesh._vertexStream->addBuffer(networkMesh._vertexBuffer, texCoordsOffset, sizeof(glm::vec2));
if (mesh.clusterIndices.size()) networkMesh._vertexStream->addBuffer(networkMesh._vertexBuffer, clusterIndicesOffset, sizeof(glm::vec4));
if (mesh.clusterWeights.size()) networkMesh._vertexStream->addBuffer(networkMesh._vertexBuffer, clusterWeightsOffset, sizeof(glm::vec4));
int channelNum = 0;
networkMesh._vertexFormat = gpu::Stream::FormatPointer(new gpu::Stream::Format());
networkMesh._vertexFormat->setAttribute(gpu::Stream::POSITION, channelNum++, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::POS_XYZ));
if (mesh.normals.size()) networkMesh._vertexFormat->setAttribute(gpu::Stream::NORMAL, channelNum++, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::XYZ));
if (mesh.tangents.size()) networkMesh._vertexFormat->setAttribute(gpu::Stream::TANGENT, channelNum++, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::XYZ));
if (mesh.colors.size()) networkMesh._vertexFormat->setAttribute(gpu::Stream::COLOR, channelNum++, gpu::Element(gpu::VEC3, gpu::FLOAT, gpu::RGB));
if (mesh.texCoords.size()) networkMesh._vertexFormat->setAttribute(gpu::Stream::TEXCOORD, channelNum++, gpu::Element(gpu::VEC2, gpu::FLOAT, gpu::UV));
if (mesh.clusterIndices.size()) networkMesh._vertexFormat->setAttribute(gpu::Stream::SKIN_CLUSTER_INDEX, channelNum++, gpu::Element(gpu::VEC4, gpu::NFLOAT, gpu::XYZW));
if (mesh.clusterWeights.size()) networkMesh._vertexFormat->setAttribute(gpu::Stream::SKIN_CLUSTER_WEIGHT, channelNum++, gpu::Element(gpu::VEC4, gpu::NFLOAT, gpu::XYZW));
}
}
_meshes.append(networkMesh);
}
finishedLoading(true);
}
bool NetworkMeshPart::isTranslucent() const {
return diffuseTexture && diffuseTexture->isTranslucent();
}
int NetworkMesh::getTranslucentPartCount(const FBXMesh& fbxMesh) const {
int count = 0;
for (int i = 0; i < parts.size(); i++) {
if (parts.at(i).isTranslucent() || fbxMesh.parts.at(i).opacity != 1.0f) {
count++;
}
}
return count;
}