overte/interface/src/Hair.cpp
2014-07-14 12:23:00 -07:00

207 lines
10 KiB
C++

//
// Hair.cpp
// interface/src
//
// Created by Philip on June 26, 2014
// Copyright 2014 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
// Creates single flexible vertlet-integrated strands that can be used for hair/fur/grass
#include "Hair.h"
#include "Util.h"
#include "world.h"
const float HAIR_DAMPING = 0.99f;
const float CONSTRAINT_RELAXATION = 10.0f;
const float HAIR_ACCELERATION_COUPLING = 0.025f;
const float HAIR_ANGULAR_VELOCITY_COUPLING = 0.01f;
const float HAIR_ANGULAR_ACCELERATION_COUPLING = 0.001f;
const float HAIR_MAX_LINEAR_ACCELERATION = 4.0f;
const float HAIR_STIFFNESS = 0.005f;
const glm::vec3 HAIR_COLOR1(0.98f, 0.92f, 0.843f);
const glm::vec3 HAIR_COLOR2(0.545f, 0.533f, 0.47f);
Hair::Hair(int strands,
int links,
float radius,
float linkLength,
float hairThickness) :
_strands(strands),
_links(links),
_linkLength(linkLength),
_hairThickness(hairThickness),
_radius(radius),
_acceleration(0.0f),
_angularVelocity(0.0f),
_angularAcceleration(0.0f),
_gravity(0.0f)
{
_hairPosition = new glm::vec3[_strands * _links];
_hairOriginalPosition = new glm::vec3[_strands * _links];
_hairLastPosition = new glm::vec3[_strands * _links];
_hairQuadDelta = new glm::vec3[_strands * _links];
_hairNormals = new glm::vec3[_strands * _links];
_hairColors = new glm::vec3[_strands * _links];
_hairIsMoveable = new int[_strands * _links];
_hairConstraints = new int[_strands * _links * HAIR_CONSTRAINTS]; // Hair can link to two others
const float FACE_WIDTH = PI / 4.0f;
glm::vec3 thisVertex;
for (int strand = 0; strand < _strands; strand++) {
float strandAngle = randFloat() * PI;
float azimuth = FACE_WIDTH / 2.0f + (randFloat() * (2.0 * PI - FACE_WIDTH));
float elevation = PI_OVER_TWO - (randFloat() * 0.75 * PI);
glm::vec3 thisStrand(sinf(azimuth) * cosf(elevation), sinf(elevation), -cosf(azimuth) * cosf(elevation));
thisStrand *= _radius;
for (int link = 0; link < _links; link++) {
int vertexIndex = strand * _links + link;
// Clear constraints
for (int link2 = 0; link2 < HAIR_CONSTRAINTS; link2++) {
_hairConstraints[vertexIndex * HAIR_CONSTRAINTS + link2] = -1;
}
if (vertexIndex % _links == 0) {
// start of strand
thisVertex = thisStrand;
} else {
thisVertex+= glm::normalize(thisStrand) * _linkLength;
// Set constraints to vertex before and maybe vertex after in strand
_hairConstraints[vertexIndex * HAIR_CONSTRAINTS] = vertexIndex - 1;
if (link < (_links - 1)) {
_hairConstraints[vertexIndex * HAIR_CONSTRAINTS + 1] = vertexIndex + 1;
}
}
_hairOriginalPosition[vertexIndex] = _hairLastPosition[vertexIndex] = _hairPosition[vertexIndex] = thisVertex;
_hairQuadDelta[vertexIndex] = glm::vec3(cos(strandAngle) * _hairThickness, 0.f, sin(strandAngle) * _hairThickness);
_hairQuadDelta[vertexIndex] *= 1.f - ((float)link / _links);
_hairNormals[vertexIndex] = glm::normalize(randVector());
if (randFloat() < elevation / PI_OVER_TWO) {
_hairColors[vertexIndex] = HAIR_COLOR1 * ((float)(link + 1) / (float)_links);
} else {
_hairColors[vertexIndex] = HAIR_COLOR2 * ((float)(link + 1) / (float)_links);
}
}
}
}
void Hair::simulate(float deltaTime) {
deltaTime = glm::clamp(deltaTime, 0.0f, 1.0f / 30.0f);
glm::vec3 acceleration = _acceleration;
if (glm::length(acceleration) > HAIR_MAX_LINEAR_ACCELERATION) {
acceleration = glm::normalize(acceleration) * HAIR_MAX_LINEAR_ACCELERATION;
}
for (int strand = 0; strand < _strands; strand++) {
for (int link = 0; link < _links; link++) {
int vertexIndex = strand * _links + link;
if (vertexIndex % _links == 0) {
// Base Joint - no integration
} else {
//
// Vertlet Integration
//
// Add velocity from last position, with damping
glm::vec3 thisPosition = _hairPosition[vertexIndex];
glm::vec3 diff = thisPosition - _hairLastPosition[vertexIndex];
_hairPosition[vertexIndex] += diff * HAIR_DAMPING;
// Resolve collisions with sphere
if (glm::length(_hairPosition[vertexIndex]) < _radius) {
_hairPosition[vertexIndex] += glm::normalize(_hairPosition[vertexIndex]) *
(_radius - glm::length(_hairPosition[vertexIndex]));
}
// Add gravity
_hairPosition[vertexIndex] += _gravity * deltaTime;
// Add linear acceleration
_hairPosition[vertexIndex] -= acceleration * HAIR_ACCELERATION_COUPLING * deltaTime;
// Add stiffness to return to original position
_hairPosition[vertexIndex] += (_hairOriginalPosition[vertexIndex] - _hairPosition[vertexIndex])
* powf(1.f - (float)link / _links, 2.f) * HAIR_STIFFNESS;
// Add angular acceleration
const float ANGULAR_VELOCITY_MIN = 0.001f;
if (glm::length(_angularVelocity) > ANGULAR_VELOCITY_MIN) {
glm::vec3 yawVector = _hairPosition[vertexIndex];
glm::vec3 angularVelocity = _angularVelocity * HAIR_ANGULAR_VELOCITY_COUPLING;
glm::vec3 angularAcceleration = _angularAcceleration * HAIR_ANGULAR_ACCELERATION_COUPLING;
yawVector.y = 0.f;
if (glm::length(yawVector) > EPSILON) {
float radius = glm::length(yawVector);
yawVector = glm::normalize(yawVector);
float angle = atan2f(yawVector.x, -yawVector.z) + PI;
glm::vec3 delta = glm::vec3(-1.f, 0.f, 0.f) * glm::angleAxis(angle, glm::vec3(0, 1, 0));
_hairPosition[vertexIndex] -= delta * radius * (angularVelocity.y - angularAcceleration.y) * deltaTime;
}
glm::vec3 pitchVector = _hairPosition[vertexIndex];
pitchVector.x = 0.f;
if (glm::length(pitchVector) > EPSILON) {
float radius = glm::length(pitchVector);
pitchVector = glm::normalize(pitchVector);
float angle = atan2f(pitchVector.y, -pitchVector.z) + PI;
glm::vec3 delta = glm::vec3(0.0f, 1.0f, 0.f) * glm::angleAxis(angle, glm::vec3(1, 0, 0));
_hairPosition[vertexIndex] -= delta * radius * (angularVelocity.x - angularAcceleration.x) * deltaTime;
}
glm::vec3 rollVector = _hairPosition[vertexIndex];
rollVector.z = 0.f;
if (glm::length(rollVector) > EPSILON) {
float radius = glm::length(rollVector);
pitchVector = glm::normalize(rollVector);
float angle = atan2f(rollVector.x, rollVector.y) + PI;
glm::vec3 delta = glm::vec3(-1.0f, 0.0f, 0.f) * glm::angleAxis(angle, glm::vec3(0, 0, 1));
_hairPosition[vertexIndex] -= delta * radius * (angularVelocity.z - angularAcceleration.z) * deltaTime;
}
}
// Impose link constraints
for (int link = 0; link < HAIR_CONSTRAINTS; link++) {
if (_hairConstraints[vertexIndex * HAIR_CONSTRAINTS + link] > -1) {
// If there is a constraint, try to enforce it
glm::vec3 vectorBetween = _hairPosition[_hairConstraints[vertexIndex * HAIR_CONSTRAINTS + link]] - _hairPosition[vertexIndex];
_hairPosition[vertexIndex] += glm::normalize(vectorBetween) * (glm::length(vectorBetween) - _linkLength) * CONSTRAINT_RELAXATION * deltaTime;
}
}
// Store start position for next vertlet pass
_hairLastPosition[vertexIndex] = thisPosition;
}
}
}
}
void Hair::render() {
//
// Before calling this function, translate/rotate to the origin of the owning object
//
glBegin(GL_QUADS);
for (int strand = 0; strand < _strands; strand++) {
for (int link = 0; link < _links - 1; link++) {
int vertexIndex = strand * _links + link;
glColor3fv(&_hairColors[vertexIndex].x);
glNormal3fv(&_hairNormals[vertexIndex].x);
glVertex3f(_hairPosition[vertexIndex].x - _hairQuadDelta[vertexIndex].x,
_hairPosition[vertexIndex].y - _hairQuadDelta[vertexIndex].y,
_hairPosition[vertexIndex].z - _hairQuadDelta[vertexIndex].z);
glVertex3f(_hairPosition[vertexIndex].x + _hairQuadDelta[vertexIndex].x,
_hairPosition[vertexIndex].y + _hairQuadDelta[vertexIndex].y,
_hairPosition[vertexIndex].z + _hairQuadDelta[vertexIndex].z);
glVertex3f(_hairPosition[vertexIndex + 1].x + _hairQuadDelta[vertexIndex].x,
_hairPosition[vertexIndex + 1].y + _hairQuadDelta[vertexIndex].y,
_hairPosition[vertexIndex + 1].z + _hairQuadDelta[vertexIndex].z);
glVertex3f(_hairPosition[vertexIndex + 1].x - _hairQuadDelta[vertexIndex].x,
_hairPosition[vertexIndex + 1].y - _hairQuadDelta[vertexIndex].y,
_hairPosition[vertexIndex + 1].z - _hairQuadDelta[vertexIndex].z);
}
}
glEnd();
}