overte/libraries/render-utils/src/RenderShadowTask.cpp
2018-02-03 16:55:25 +01:00

414 lines
18 KiB
C++

//
// RenderShadowTask.cpp
// render-utils/src/
//
// Created by Zach Pomerantz on 1/7/2016.
// Copyright 2016 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include "RenderShadowTask.h"
#include <gpu/Context.h>
#include <ViewFrustum.h>
#include <render/CullTask.h>
#include <render/SortTask.h>
#include <render/DrawTask.h>
#include "DeferredLightingEffect.h"
#include "FramebufferCache.h"
#include "RenderUtilsLogging.h"
// These values are used for culling the objects rendered in the shadow map
// but are readjusted afterwards
#define SHADOW_FRUSTUM_NEAR 1.0f
#define SHADOW_FRUSTUM_FAR 500.0f
using namespace render;
extern void initZPassPipelines(ShapePlumber& plumber, gpu::StatePointer state);
static void computeNearFar(const Triangle& triangle, const Plane shadowClipPlanes[4], float& near, float& far) {
static const int MAX_TRIANGLE_COUNT = 16;
Triangle clippedTriangles[MAX_TRIANGLE_COUNT];
auto clippedTriangleCount = clipTriangleWithPlanes(triangle, shadowClipPlanes, 4, clippedTriangles, MAX_TRIANGLE_COUNT);
for (auto i = 0; i < clippedTriangleCount; i++) {
const auto& clippedTriangle = clippedTriangles[i];
near = glm::min(near, -clippedTriangle.v0.z);
near = glm::min(near, -clippedTriangle.v1.z);
near = glm::min(near, -clippedTriangle.v2.z);
far = glm::max(far, -clippedTriangle.v0.z);
far = glm::max(far, -clippedTriangle.v1.z);
far = glm::max(far, -clippedTriangle.v2.z);
}
}
static void computeNearFar(const glm::vec3 sceneBoundVertices[8], const Plane shadowClipPlanes[4], float& near, float& far) {
// This code is inspired from Microsoft's CascadedShadowMaps11 sample which is under MIT licence.
// See https://code.msdn.microsoft.com/windowsdesktop/Direct3D-Shadow-Win32-2d72a4f2/sourcecode?fileId=121915&pathId=1645833187
// Basically it decomposes the object bounding box in triangles and clips each triangle with the shadow
// frustum planes. Finally it computes the minimum and maximum depth of the clipped triangle vertices
// in shadow space to extract the near and far distances of the shadow frustum.
static const std::array<int[4], 6> boxQuadVertexIndices = { {
{ TOP_LEFT_FAR, BOTTOM_LEFT_FAR, BOTTOM_RIGHT_FAR, TOP_RIGHT_FAR },
{ TOP_LEFT_NEAR, BOTTOM_LEFT_NEAR, BOTTOM_RIGHT_NEAR, TOP_RIGHT_NEAR },
{ TOP_RIGHT_FAR, BOTTOM_RIGHT_FAR, BOTTOM_RIGHT_NEAR, TOP_RIGHT_NEAR },
{ TOP_LEFT_FAR, BOTTOM_LEFT_FAR, BOTTOM_LEFT_NEAR, TOP_LEFT_NEAR },
{ BOTTOM_LEFT_FAR, BOTTOM_RIGHT_FAR, BOTTOM_RIGHT_NEAR, BOTTOM_LEFT_NEAR },
{ TOP_LEFT_FAR, TOP_RIGHT_FAR, TOP_RIGHT_NEAR, TOP_LEFT_NEAR }
} };
Triangle triangle;
for (auto quadVertexIndices : boxQuadVertexIndices) {
triangle.v0 = sceneBoundVertices[quadVertexIndices[0]];
triangle.v1 = sceneBoundVertices[quadVertexIndices[1]];
triangle.v2 = sceneBoundVertices[quadVertexIndices[2]];
computeNearFar(triangle, shadowClipPlanes, near, far);
triangle.v1 = sceneBoundVertices[quadVertexIndices[3]];
computeNearFar(triangle, shadowClipPlanes, near, far);
}
}
static void adjustNearFar(const AABox& inShapeBounds, ViewFrustum& shadowFrustum) {
const Transform shadowView{ shadowFrustum.getView() };
const Transform shadowViewInverse{ shadowView.getInverseMatrix() };
glm::vec3 sceneBoundVertices[8];
// Keep only the left, right, top and bottom shadow frustum planes as we wish to determine
// the near and far
Plane shadowClipPlanes[4];
int i;
// The vertices of the scene bounding box are expressed in the shadow frustum's local space
for (i = 0; i < 8; i++) {
sceneBoundVertices[i] = shadowViewInverse.transform(inShapeBounds.getVertex(static_cast<BoxVertex>(i)));
}
shadowFrustum.getUniformlyTransformedSidePlanes(shadowViewInverse, shadowClipPlanes);
float near = std::numeric_limits<float>::max();
float far = 0.0f;
computeNearFar(sceneBoundVertices, shadowClipPlanes, near, far);
// Limit the far range to the one used originally.
far = glm::min(far, shadowFrustum.getFarClip());
const auto depthEpsilon = 0.1f;
auto projMatrix = glm::ortho(-1.0f, 1.0f, -1.0f, 1.0f, near - depthEpsilon, far + depthEpsilon);
auto shadowProjection = shadowFrustum.getProjection();
shadowProjection[2][2] = projMatrix[2][2];
shadowProjection[3][2] = projMatrix[3][2];
shadowFrustum.setProjection(shadowProjection);
shadowFrustum.calculate();
}
void RenderShadowMap::run(const render::RenderContextPointer& renderContext, const Inputs& inputs) {
assert(renderContext->args);
assert(renderContext->args->hasViewFrustum());
const auto& inShapes = inputs.get0();
const auto& inShapeBounds = inputs.get1();
auto lightStage = renderContext->_scene->getStage<LightStage>();
assert(lightStage);
auto shadow = lightStage->getCurrentKeyShadow();
if (!shadow || _cascadeIndex >= shadow->getCascadeCount()) {
return;
}
auto& cascade = shadow->getCascade(_cascadeIndex);
auto& fbo = cascade.framebuffer;
RenderArgs* args = renderContext->args;
ShapeKey::Builder defaultKeyBuilder;
auto adjustedShadowFrustum = args->getViewFrustum();
// Adjust the frustum near and far depths based on the rendered items bounding box to have
// the minimal Z range.
adjustNearFar(inShapeBounds, adjustedShadowFrustum);
// Reapply the frustum as it has been adjusted
shadow->setCascadeFrustum(_cascadeIndex, adjustedShadowFrustum);
args->popViewFrustum();
args->pushViewFrustum(adjustedShadowFrustum);
gpu::doInBatch(args->_context, [&](gpu::Batch& batch) {
args->_batch = &batch;
batch.enableStereo(false);
glm::ivec4 viewport{0, 0, fbo->getWidth(), fbo->getHeight()};
batch.setViewportTransform(viewport);
batch.setStateScissorRect(viewport);
batch.setFramebuffer(fbo);
batch.clearFramebuffer(
gpu::Framebuffer::BUFFER_COLOR0 | gpu::Framebuffer::BUFFER_DEPTH,
vec4(vec3(1.0, 1.0, 1.0), 0.0), 1.0, 0, true);
glm::mat4 projMat;
Transform viewMat;
args->getViewFrustum().evalProjectionMatrix(projMat);
args->getViewFrustum().evalViewTransform(viewMat);
batch.setProjectionTransform(projMat);
batch.setViewTransform(viewMat, false);
auto shadowPipeline = _shapePlumber->pickPipeline(args, defaultKeyBuilder);
auto shadowSkinnedPipeline = _shapePlumber->pickPipeline(args, defaultKeyBuilder.withSkinned());
std::vector<ShapeKey> skinnedShapeKeys{};
std::vector<ShapeKey> ownPipelineShapeKeys{};
// Iterate through all inShapes and render the unskinned
args->_shapePipeline = shadowPipeline;
batch.setPipeline(shadowPipeline->pipeline);
for (auto items : inShapes) {
if (items.first.isSkinned()) {
skinnedShapeKeys.push_back(items.first);
} else if (!items.first.hasOwnPipeline()) {
renderItems(renderContext, items.second);
} else {
ownPipelineShapeKeys.push_back(items.first);
}
}
// Reiterate to render the skinned
args->_shapePipeline = shadowSkinnedPipeline;
batch.setPipeline(shadowSkinnedPipeline->pipeline);
for (const auto& key : skinnedShapeKeys) {
renderItems(renderContext, inShapes.at(key));
}
// Finally render the items with their own pipeline last to prevent them from breaking the
// render state. This is probably a temporary code as there is probably something better
// to do in the render call of objects that have their own pipeline.
args->_shapePipeline = nullptr;
for (const auto& key : ownPipelineShapeKeys) {
args->_itemShapeKey = key._flags.to_ulong();
renderItems(renderContext, inShapes.at(key));
}
args->_batch = nullptr;
});
}
void RenderShadowTask::build(JobModel& task, const render::Varying& input, render::Varying& output, uint8_t tagBits, uint8_t tagMask) {
::CullFunctor cullFunctor = [this](const RenderArgs* args, const AABox& bounds) {
return _cullFunctor(args, bounds);
};
// Prepare the ShapePipeline
ShapePlumberPointer shapePlumber = std::make_shared<ShapePlumber>();
{
auto state = std::make_shared<gpu::State>();
state->setCullMode(gpu::State::CULL_BACK);
state->setDepthTest(true, true, gpu::LESS_EQUAL);
initZPassPipelines(*shapePlumber, state);
}
const auto setupOutput = task.addJob<RenderShadowSetup>("ShadowSetup");
const auto queryResolution = setupOutput.getN<RenderShadowSetup::Outputs>(2);
// Fetch and cull the items from the scene
static const auto shadowCasterFilter = ItemFilter::Builder::visibleWorldItems().withTypeShape().withOpaque().withoutLayered();
const auto fetchInput = FetchSpatialTree::Inputs(shadowCasterFilter, queryResolution).asVarying();
const auto shadowSelection = task.addJob<FetchSpatialTree>("FetchShadowTree", fetchInput);
const auto selectionInputs = FetchSpatialSelection::Inputs(shadowSelection, shadowCasterFilter).asVarying();
const auto shadowItems = task.addJob<FetchSpatialSelection>("FetchShadowSelection", selectionInputs);
// Sort
const auto sortedPipelines = task.addJob<PipelineSortShapes>("PipelineSortShadow", shadowItems);
const auto sortedShapes = task.addJob<DepthSortShapes>("DepthSortShadow", sortedPipelines, true);
render::Varying cascadeFrustums[SHADOW_CASCADE_MAX_COUNT] = {
ViewFrustumPointer(),
ViewFrustumPointer(),
ViewFrustumPointer(),
ViewFrustumPointer()
};
for (auto i = 0; i < SHADOW_CASCADE_MAX_COUNT; i++) {
char jobName[64];
sprintf(jobName, "ShadowCascadeSetup%d", i);
const auto cascadeSetupOutput = task.addJob<RenderShadowCascadeSetup>(jobName, i, _cullFunctor, tagBits, tagMask);
const auto shadowFilter = cascadeSetupOutput.getN<RenderShadowCascadeSetup::Outputs>(0);
auto antiFrustum = render::Varying(ViewFrustumPointer());
cascadeFrustums[i] = cascadeSetupOutput.getN<RenderShadowCascadeSetup::Outputs>(1);
if (i > 1) {
antiFrustum = cascadeFrustums[i - 2];
}
// CPU jobs: finer grained culling
const auto cullInputs = CullShapeBounds::Inputs(sortedShapes, shadowFilter, antiFrustum).asVarying();
const auto culledShadowItemsAndBounds = task.addJob<CullShapeBounds>("CullShadowCascade", cullInputs, cullFunctor, RenderDetails::SHADOW);
// GPU jobs: Render to shadow map
sprintf(jobName, "RenderShadowMap%d", i);
task.addJob<RenderShadowMap>(jobName, culledShadowItemsAndBounds, shapePlumber, i);
task.addJob<RenderShadowCascadeTeardown>("ShadowCascadeTeardown", shadowFilter);
}
task.addJob<RenderShadowTeardown>("ShadowTeardown", setupOutput);
}
void RenderShadowTask::configure(const Config& configuration) {
DependencyManager::get<DeferredLightingEffect>()->setShadowMapEnabled(configuration.enabled);
// This is a task, so must still propogate configure() to its Jobs
// Task::configure(configuration);
}
RenderShadowSetup::RenderShadowSetup() :
_coarseShadowFrustum{ std::make_shared<ViewFrustum>() } {
}
void RenderShadowSetup::configure(const Config& configuration) {
setConstantBias(0, configuration.constantBias0);
setConstantBias(1, configuration.constantBias1);
setConstantBias(2, configuration.constantBias2);
setConstantBias(3, configuration.constantBias3);
setSlopeBias(0, configuration.slopeBias0);
setSlopeBias(1, configuration.slopeBias1);
setSlopeBias(2, configuration.slopeBias2);
setSlopeBias(3, configuration.slopeBias3);
}
void RenderShadowSetup::setConstantBias(int cascadeIndex, float value) {
_bias[cascadeIndex]._constant = value * value * value * 0.004f;
}
void RenderShadowSetup::setSlopeBias(int cascadeIndex, float value) {
_bias[cascadeIndex]._slope = value * value * value * 0.01f;
}
void RenderShadowSetup::run(const render::RenderContextPointer& renderContext, Outputs& output) {
auto lightStage = renderContext->_scene->getStage<LightStage>();
assert(lightStage);
// Cache old render args
RenderArgs* args = renderContext->args;
output.edit0() = args->_renderMode;
output.edit1() = glm::ivec2(0, 0);
const auto globalShadow = lightStage->getCurrentKeyShadow();
if (globalShadow) {
globalShadow->setKeylightFrustum(args->getViewFrustum(), SHADOW_FRUSTUM_NEAR, SHADOW_FRUSTUM_FAR);
auto& firstCascade = globalShadow->getCascade(0);
auto& firstCascadeFrustum = firstCascade.getFrustum();
unsigned int cascadeIndex;
// Adjust each cascade frustum
for (cascadeIndex = 0; cascadeIndex < globalShadow->getCascadeCount(); ++cascadeIndex) {
auto& bias = _bias[cascadeIndex];
globalShadow->setKeylightCascadeFrustum(cascadeIndex, args->getViewFrustum(),
SHADOW_FRUSTUM_NEAR, SHADOW_FRUSTUM_FAR,
bias._constant, bias._slope);
}
// Now adjust coarse frustum bounds
auto frustumPosition = firstCascadeFrustum->getPosition();
auto farTopLeft = firstCascadeFrustum->getFarTopLeft() - frustumPosition;
auto farBottomRight = firstCascadeFrustum->getFarBottomRight() - frustumPosition;
auto left = glm::dot(farTopLeft, firstCascadeFrustum->getRight());
auto right = glm::dot(farBottomRight, firstCascadeFrustum->getRight());
auto top = glm::dot(farTopLeft, firstCascadeFrustum->getUp());
auto bottom = glm::dot(farBottomRight, firstCascadeFrustum->getUp());
auto near = firstCascadeFrustum->getNearClip();
auto far = firstCascadeFrustum->getFarClip();
for (cascadeIndex = 1; cascadeIndex < globalShadow->getCascadeCount(); ++cascadeIndex) {
auto& cascadeFrustum = globalShadow->getCascade(cascadeIndex).getFrustum();
farTopLeft = cascadeFrustum->getFarTopLeft() - frustumPosition;
farBottomRight = cascadeFrustum->getFarBottomRight() - frustumPosition;
auto cascadeLeft = glm::dot(farTopLeft, cascadeFrustum->getRight());
auto cascadeRight = glm::dot(farBottomRight, cascadeFrustum->getRight());
auto cascadeTop = glm::dot(farTopLeft, cascadeFrustum->getUp());
auto cascadeBottom = glm::dot(farBottomRight, cascadeFrustum->getUp());
auto cascadeNear = cascadeFrustum->getNearClip();
auto cascadeFar = cascadeFrustum->getFarClip();
left = glm::min(left, cascadeLeft);
right = glm::max(right, cascadeRight);
bottom = glm::min(bottom, cascadeBottom);
top = glm::max(top, cascadeTop);
near = glm::min(near, cascadeNear);
far = glm::max(far, cascadeFar);
}
_coarseShadowFrustum->setPosition(firstCascadeFrustum->getPosition());
_coarseShadowFrustum->setOrientation(firstCascadeFrustum->getOrientation());
_coarseShadowFrustum->setProjection(glm::ortho<float>(left, right, bottom, top, near, far));
_coarseShadowFrustum->calculate();
// Push frustum for further culling and selection
args->pushViewFrustum(*_coarseShadowFrustum);
args->_renderMode = RenderArgs::SHADOW_RENDER_MODE;
// We want for the octree query enough resolution to catch the details in the lowest cascade. So compute
// the desired resolution for the first cascade frustum and extrapolate it to the coarse frustum.
glm::ivec2 queryResolution = firstCascade.framebuffer->getSize();
queryResolution.x = int(queryResolution.x * _coarseShadowFrustum->getWidth() / firstCascadeFrustum->getWidth());
queryResolution.y = int(queryResolution.y * _coarseShadowFrustum->getHeight() / firstCascadeFrustum->getHeight());
output.edit1() = queryResolution;
}
}
void RenderShadowCascadeSetup::run(const render::RenderContextPointer& renderContext, Outputs& output) {
auto lightStage = renderContext->_scene->getStage<LightStage>();
assert(lightStage);
// Cache old render args
RenderArgs* args = renderContext->args;
const auto globalShadow = lightStage->getCurrentKeyShadow();
if (globalShadow && _cascadeIndex<globalShadow->getCascadeCount()) {
output.edit0() = ItemFilter::Builder::visibleWorldItems().withTypeShape().withOpaque().withoutLayered().withTagBits(_tagBits, _tagMask);
// Set the keylight render args
auto& cascade = globalShadow->getCascade(_cascadeIndex);
auto& cascadeFrustum = cascade.getFrustum();
args->pushViewFrustum(*cascadeFrustum);
auto texelSize = glm::min(cascadeFrustum->getHeight(), cascadeFrustum->getWidth()) / cascade.framebuffer->getSize().x;
// Set the cull threshold to 24 shadow texels. This is totally arbitrary
const auto minTexelCount = 24.0f;
// TODO : maybe adapt that with LOD management system?
texelSize *= minTexelCount;
_cullFunctor._minSquareSize = texelSize * texelSize;
output.edit1() = cascadeFrustum;
} else {
output.edit0() = ItemFilter::Builder::nothing();
output.edit1() = ViewFrustumPointer();
}
}
void RenderShadowCascadeTeardown::run(const render::RenderContextPointer& renderContext, const Input& input) {
RenderArgs* args = renderContext->args;
if (args->_renderMode == RenderArgs::SHADOW_RENDER_MODE && !input.selectsNothing()) {
args->popViewFrustum();
}
assert(args->hasViewFrustum());
}
void RenderShadowTeardown::run(const render::RenderContextPointer& renderContext, const Input& input) {
RenderArgs* args = renderContext->args;
if (args->_renderMode == RenderArgs::SHADOW_RENDER_MODE) {
args->popViewFrustum();
}
assert(args->hasViewFrustum());
// Reset the render args
args->_renderMode = input.get0();
}