overte/libraries/audio/src/Sound.cpp
Ken Cooke e93e1a7c4f Preliminary support for Ambisonic audio injectors.
Supports 4-channel WAV files, presumed to be B-format (FuMa) first-order Ambisonic.
Supports WAV with arbitrary sample rate (needs optimization).
Supports soundfield volume and orientation set via script.
Supports localOnly client-side injection using simple (non-spatialized) test renderer.
2016-12-02 18:20:57 -08:00

294 lines
11 KiB
C++

//
// Sound.cpp
// libraries/audio/src
//
// Created by Stephen Birarda on 1/2/2014.
// Copyright 2014 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include <stdint.h>
#include <glm/glm.hpp>
#include <QDataStream>
#include <QtCore/QDebug>
#include <QtNetwork/QNetworkRequest>
#include <QtNetwork/QNetworkReply>
#include <qendian.h>
#include <LimitedNodeList.h>
#include <NetworkAccessManager.h>
#include <SharedUtil.h>
#include "AudioRingBuffer.h"
#include "AudioLogging.h"
#include "AudioSRC.h"
#include "Sound.h"
QScriptValue soundSharedPointerToScriptValue(QScriptEngine* engine, const SharedSoundPointer& in) {
return engine->newQObject(new SoundScriptingInterface(in), QScriptEngine::ScriptOwnership);
}
void soundSharedPointerFromScriptValue(const QScriptValue& object, SharedSoundPointer& out) {
if (auto soundInterface = qobject_cast<SoundScriptingInterface*>(object.toQObject())) {
out = soundInterface->getSound();
}
}
SoundScriptingInterface::SoundScriptingInterface(SharedSoundPointer sound) : _sound(sound) {
QObject::connect(sound.data(), &Sound::ready, this, &SoundScriptingInterface::ready);
}
Sound::Sound(const QUrl& url, bool isStereo, bool isAmbisonic) :
Resource(url),
_isStereo(isStereo),
_isAmbisonic(isAmbisonic),
_isReady(false)
{
}
void Sound::downloadFinished(const QByteArray& data) {
// replace our byte array with the downloaded data
QByteArray rawAudioByteArray = QByteArray(data);
QString fileName = getURL().fileName().toLower();
static const QString WAV_EXTENSION = ".wav";
static const QString RAW_EXTENSION = ".raw";
if (fileName.endsWith(WAV_EXTENSION)) {
QByteArray outputAudioByteArray;
int sampleRate = interpretAsWav(rawAudioByteArray, outputAudioByteArray);
if (sampleRate != 0) {
downSample(outputAudioByteArray, sampleRate);
}
} else if (fileName.endsWith(RAW_EXTENSION)) {
// check if this was a stereo raw file
// since it's raw the only way for us to know that is if the file was called .stereo.raw
if (fileName.toLower().endsWith("stereo.raw")) {
_isStereo = true;
qCDebug(audio) << "Processing sound of" << rawAudioByteArray.size() << "bytes from" << getURL() << "as stereo audio file.";
}
// Process as 48khz RAW file
downSample(rawAudioByteArray, 48000);
} else {
qCDebug(audio) << "Unknown sound file type";
}
finishedLoading(true);
_isReady = true;
emit ready();
}
void Sound::downSample(const QByteArray& rawAudioByteArray, int sampleRate) {
// we want to convert it to the format that the audio-mixer wants
// which is signed, 16-bit, 24Khz
if (sampleRate == AudioConstants::SAMPLE_RATE) {
// no resampling needed
_byteArray = rawAudioByteArray;
} else if (_isAmbisonic) {
// FIXME: add a proper Ambisonic resampler!
int numChannels = 4;
AudioSRC resampler[4] { {sampleRate, AudioConstants::SAMPLE_RATE, 1},
{sampleRate, AudioConstants::SAMPLE_RATE, 1},
{sampleRate, AudioConstants::SAMPLE_RATE, 1},
{sampleRate, AudioConstants::SAMPLE_RATE, 1} };
// resize to max possible output
int numSourceFrames = rawAudioByteArray.size() / (numChannels * sizeof(AudioConstants::AudioSample));
int maxDestinationFrames = resampler[0].getMaxOutput(numSourceFrames);
int maxDestinationBytes = maxDestinationFrames * numChannels * sizeof(AudioConstants::AudioSample);
_byteArray.resize(maxDestinationBytes);
int numDestinationFrames = 0;
// iterate over channels
int16_t* srcBuffer = new int16_t[numSourceFrames];
int16_t* dstBuffer = new int16_t[maxDestinationFrames];
for (int ch = 0; ch < 4; ch++) {
int16_t* src = (int16_t*)rawAudioByteArray.data();
int16_t* dst = (int16_t*)_byteArray.data();
// deinterleave samples
for (int i = 0; i < numSourceFrames; i++) {
srcBuffer[i] = src[4*i + ch];
}
// resample one channel
numDestinationFrames = resampler[ch].render(srcBuffer, dstBuffer, numSourceFrames);
// reinterleave samples
for (int i = 0; i < numDestinationFrames; i++) {
dst[4*i + ch] = dstBuffer[i];
}
}
delete[] srcBuffer;
delete[] dstBuffer;
// truncate to actual output
int numDestinationBytes = numDestinationFrames * numChannels * sizeof(AudioConstants::AudioSample);
_byteArray.resize(numDestinationBytes);
} else {
int numChannels = _isStereo ? 2 : 1;
AudioSRC resampler(sampleRate, AudioConstants::SAMPLE_RATE, numChannels);
// resize to max possible output
int numSourceFrames = rawAudioByteArray.size() / (numChannels * sizeof(AudioConstants::AudioSample));
int maxDestinationFrames = resampler.getMaxOutput(numSourceFrames);
int maxDestinationBytes = maxDestinationFrames * numChannels * sizeof(AudioConstants::AudioSample);
_byteArray.resize(maxDestinationBytes);
int numDestinationFrames = resampler.render((int16_t*)rawAudioByteArray.data(),
(int16_t*)_byteArray.data(),
numSourceFrames);
// truncate to actual output
int numDestinationBytes = numDestinationFrames * numChannels * sizeof(AudioConstants::AudioSample);
_byteArray.resize(numDestinationBytes);
}
}
//
// Format description from https://ccrma.stanford.edu/courses/422/projects/WaveFormat/
//
// The header for a WAV file looks like this:
// Positions Sample Value Description
// 00-03 "RIFF" Marks the file as a riff file. Characters are each 1 byte long.
// 04-07 File size (int) Size of the overall file - 8 bytes, in bytes (32-bit integer).
// 08-11 "WAVE" File Type Header. For our purposes, it always equals "WAVE".
// 12-15 "fmt " Format chunk marker.
// 16-19 16 Length of format data as listed above
// 20-21 1 Type of format: (1=PCM, 257=Mu-Law, 258=A-Law, 259=ADPCM) - 2 byte integer
// 22-23 2 Number of Channels - 2 byte integer
// 24-27 44100 Sample Rate - 32 byte integer. Sample Rate = Number of Samples per second, or Hertz.
// 28-31 176400 (Sample Rate * BitsPerSample * Channels) / 8.
// 32-33 4 (BitsPerSample * Channels) / 8 - 8 bit mono2 - 8 bit stereo/16 bit mono4 - 16 bit stereo
// 34-35 16 Bits per sample
// 36-39 "data" Chunk header. Marks the beginning of the data section.
// 40-43 File size (int) Size of the data section.
// 44-?? Actual sound data
// Sample values are given above for a 16-bit stereo source.
//
struct chunk {
char id[4];
quint32 size;
};
struct RIFFHeader {
chunk descriptor; // "RIFF"
char type[4]; // "WAVE"
};
struct WAVEHeader {
chunk descriptor;
quint16 audioFormat; // Format type: 1=PCM, 257=Mu-Law, 258=A-Law, 259=ADPCM
quint16 numChannels; // Number of channels: 1=mono, 2=stereo
quint32 sampleRate;
quint32 byteRate; // Sample rate * Number of Channels * Bits per sample / 8
quint16 blockAlign; // (Number of Channels * Bits per sample) / 8.1
quint16 bitsPerSample;
};
struct DATAHeader {
chunk descriptor;
};
struct CombinedHeader {
RIFFHeader riff;
WAVEHeader wave;
};
// returns wavfile sample rate, used for resampling
int Sound::interpretAsWav(const QByteArray& inputAudioByteArray, QByteArray& outputAudioByteArray) {
CombinedHeader fileHeader;
// Create a data stream to analyze the data
QDataStream waveStream(const_cast<QByteArray *>(&inputAudioByteArray), QIODevice::ReadOnly);
if (waveStream.readRawData(reinterpret_cast<char *>(&fileHeader), sizeof(CombinedHeader)) == sizeof(CombinedHeader)) {
if (strncmp(fileHeader.riff.descriptor.id, "RIFF", 4) == 0) {
waveStream.setByteOrder(QDataStream::LittleEndian);
} else {
// descriptor.id == "RIFX" also signifies BigEndian file
// waveStream.setByteOrder(QDataStream::BigEndian);
qCDebug(audio) << "Currently not supporting big-endian audio files.";
return 0;
}
if (strncmp(fileHeader.riff.type, "WAVE", 4) != 0
|| strncmp(fileHeader.wave.descriptor.id, "fmt", 3) != 0) {
qCDebug(audio) << "Not a WAVE Audio file.";
return 0;
}
// added the endianess check as an extra level of security
if (qFromLittleEndian<quint16>(fileHeader.wave.audioFormat) != 1) {
qCDebug(audio) << "Currently not supporting non PCM audio files.";
return 0;
}
if (qFromLittleEndian<quint16>(fileHeader.wave.numChannels) == 2) {
_isStereo = true;
} else if (qFromLittleEndian<quint16>(fileHeader.wave.numChannels) == 4) {
_isAmbisonic = true;
} else if (qFromLittleEndian<quint16>(fileHeader.wave.numChannels) != 1) {
qCDebug(audio) << "Currently not support audio files with other than 1/2/4 channels.";
return 0;
}
if (qFromLittleEndian<quint16>(fileHeader.wave.bitsPerSample) != 16) {
qCDebug(audio) << "Currently not supporting non 16bit audio files.";
return 0;
}
// Skip any extra data in the WAVE chunk
waveStream.skipRawData(fileHeader.wave.descriptor.size - (sizeof(WAVEHeader) - sizeof(chunk)));
// Read off remaining header information
DATAHeader dataHeader;
while (true) {
// Read chunks until the "data" chunk is found
if (waveStream.readRawData(reinterpret_cast<char *>(&dataHeader), sizeof(DATAHeader)) == sizeof(DATAHeader)) {
if (strncmp(dataHeader.descriptor.id, "data", 4) == 0) {
break;
}
waveStream.skipRawData(dataHeader.descriptor.size);
} else {
qCDebug(audio) << "Could not read wav audio data header.";
return 0;
}
}
// Now pull out the data
quint32 outputAudioByteArraySize = qFromLittleEndian<quint32>(dataHeader.descriptor.size);
outputAudioByteArray.resize(outputAudioByteArraySize);
if (waveStream.readRawData(outputAudioByteArray.data(), outputAudioByteArraySize) != (int)outputAudioByteArraySize) {
qCDebug(audio) << "Error reading WAV file";
return 0;
}
_duration = (float) (outputAudioByteArraySize / (fileHeader.wave.sampleRate * fileHeader.wave.numChannels * fileHeader.wave.bitsPerSample / 8.0f));
return fileHeader.wave.sampleRate;
} else {
qCDebug(audio) << "Could not read wav audio file header.";
return 0;
}
}