overte/libraries/shared/src/GLMHelpers.h
Anthony J. Thibault 111ed65bf8 Controller Pose values are relative to Avatar.
Pass a InputCalibrationData to each inputPlugin and inputDevice.
This contains the most up sensorToWorldMatrix, avatarMat and hmdSensorMatrix.
Each input plugin can use this data to transform it's poses into Avatar space
before sending it up the chain.

This fixes a bug in the handControllerGrab.js script that relied on the hand controller
rotation/positions being in the avatar frame.
2016-02-11 17:18:01 -08:00

234 lines
8.2 KiB
C++

//
// GLMHelpers.h
// libraries/shared/src
//
// Created by Stephen Birarda on 2014-08-07.
// Copyright 2014 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#ifndef hifi_GLMHelpers_h
#define hifi_GLMHelpers_h
#include <stdint.h>
#include <glm/glm.hpp>
#include <glm/gtc/quaternion.hpp>
#include <glm/gtx/quaternion.hpp>
// Bring the most commonly used GLM types into the default namespace
using glm::ivec2;
using glm::ivec3;
using glm::ivec4;
using glm::uvec2;
using glm::uvec3;
using glm::uvec4;
using glm::mat3;
using glm::mat4;
using glm::vec2;
using glm::vec3;
using glm::vec4;
using glm::quat;
#if defined(__GNUC__) && !defined(__clang__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wdouble-promotion"
#endif
#include <QtCore/QByteArray>
#include <QtGui/QMatrix4x4>
#include <QtGui/QColor>
#if defined(__GNUC__) && !defined(__clang__)
#pragma GCC diagnostic pop
#endif
#include "SharedUtil.h"
// this is where the coordinate system is represented
const glm::vec3 IDENTITY_RIGHT = glm::vec3( 1.0f, 0.0f, 0.0f);
const glm::vec3 IDENTITY_UP = glm::vec3( 0.0f, 1.0f, 0.0f);
const glm::vec3 IDENTITY_FRONT = glm::vec3( 0.0f, 0.0f,-1.0f);
glm::quat safeMix(const glm::quat& q1, const glm::quat& q2, float alpha);
class Quaternions {
public:
static const quat IDENTITY;
static const quat Y_180;
};
class Vectors {
public:
static const vec3 UNIT_X;
static const vec3 UNIT_Y;
static const vec3 UNIT_Z;
static const vec3 UNIT_NEG_X;
static const vec3 UNIT_NEG_Y;
static const vec3 UNIT_NEG_Z;
static const vec3 UNIT_XY;
static const vec3 UNIT_XZ;
static const vec3 UNIT_YZ;
static const vec3 UNIT_XYZ;
static const vec3 MAX;
static const vec3 MIN;
static const vec3 ZERO;
static const vec3 ONE;
static const vec3 TWO;
static const vec3 HALF;
static const vec3& RIGHT;
static const vec3& UP;
static const vec3& FRONT;
static const vec3 ZERO4;
};
// These pack/unpack functions are designed to start specific known types in as efficient a manner
// as possible. Taking advantage of the known characteristics of the semantic types.
// Angles are known to be between 0 and 360 degrees, this allows us to encode in 16bits with great accuracy
int packFloatAngleToTwoByte(unsigned char* buffer, float degrees);
int unpackFloatAngleFromTwoByte(const uint16_t* byteAnglePointer, float* destinationPointer);
// Orientation Quats are known to have 4 normalized components be between -1.0 and 1.0
// this allows us to encode each component in 16bits with great accuracy
int packOrientationQuatToBytes(unsigned char* buffer, const glm::quat& quatInput);
int unpackOrientationQuatFromBytes(const unsigned char* buffer, glm::quat& quatOutput);
// Ratios need the be highly accurate when less than 10, but not very accurate above 10, and they
// are never greater than 1000 to 1, this allows us to encode each component in 16bits
int packFloatRatioToTwoByte(unsigned char* buffer, float ratio);
int unpackFloatRatioFromTwoByte(const unsigned char* buffer, float& ratio);
// Near/Far Clip values need the be highly accurate when less than 10, but only integer accuracy above 10 and
// they are never greater than 16,000, this allows us to encode each component in 16bits
int packClipValueToTwoByte(unsigned char* buffer, float clipValue);
int unpackClipValueFromTwoByte(const unsigned char* buffer, float& clipValue);
// Positive floats that don't need to be very precise
int packFloatToByte(unsigned char* buffer, float value, float scaleBy);
int unpackFloatFromByte(const unsigned char* buffer, float& value, float scaleBy);
// Allows sending of fixed-point numbers: radix 1 makes 15.1 number, radix 8 makes 8.8 number, etc
int packFloatScalarToSignedTwoByteFixed(unsigned char* buffer, float scalar, int radix);
int unpackFloatScalarFromSignedTwoByteFixed(const int16_t* byteFixedPointer, float* destinationPointer, int radix);
// A convenience for sending vec3's as fixed-point floats
int packFloatVec3ToSignedTwoByteFixed(unsigned char* destBuffer, const glm::vec3& srcVector, int radix);
int unpackFloatVec3FromSignedTwoByteFixed(const unsigned char* sourceBuffer, glm::vec3& destination, int radix);
/// \return vec3 with euler angles in radians
glm::vec3 safeEulerAngles(const glm::quat& q);
float angleBetween(const glm::vec3& v1, const glm::vec3& v2);
glm::quat rotationBetween(const glm::vec3& v1, const glm::vec3& v2);
bool isPointBehindTrianglesPlane(glm::vec3 point, glm::vec3 p0, glm::vec3 p1, glm::vec3 p2);
glm::vec3 extractTranslation(const glm::mat4& matrix);
void setTranslation(glm::mat4& matrix, const glm::vec3& translation);
glm::quat extractRotation(const glm::mat4& matrix, bool assumeOrthogonal = false);
glm::quat glmExtractRotation(const glm::mat4& matrix);
glm::vec3 extractScale(const glm::mat4& matrix);
float extractUniformScale(const glm::mat4& matrix);
float extractUniformScale(const glm::vec3& scale);
QByteArray createByteArray(const glm::vec3& vector);
QByteArray createByteArray(const glm::quat& quat);
/// \return bool are two orientations similar to each other
const float ORIENTATION_SIMILAR_ENOUGH = 5.0f; // 10 degrees in any direction
bool isSimilarOrientation(const glm::quat& orientionA, const glm::quat& orientionB,
float similarEnough = ORIENTATION_SIMILAR_ENOUGH);
const float POSITION_SIMILAR_ENOUGH = 0.1f; // 0.1 meter
bool isSimilarPosition(const glm::vec3& positionA, const glm::vec3& positionB, float similarEnough = POSITION_SIMILAR_ENOUGH);
uvec2 toGlm(const QSize& size);
ivec2 toGlm(const QPoint& pt);
vec2 toGlm(const QPointF& pt);
vec3 toGlm(const xColor& color);
vec4 toGlm(const QColor& color);
ivec4 toGlm(const QRect& rect);
vec4 toGlm(const xColor& color, float alpha);
QSize fromGlm(const glm::ivec2 & v);
QMatrix4x4 fromGlm(const glm::mat4 & m);
QRectF glmToRect(const glm::vec2 & pos, const glm::vec2 & size);
template <typename T>
float aspect(const T& t) {
return (float)t.x / (float)t.y;
}
// Take values in an arbitrary range [0, size] and convert them to the range [0, 1]
template <typename T>
T toUnitScale(const T& value, const T& size) {
return value / size;
}
// Take values in an arbitrary range [0, size] and convert them to the range [0, 1]
template <typename T>
T toNormalizedDeviceScale(const T& value, const T& size) {
vec2 result = toUnitScale(value, size);
result *= 2.0f;
result -= 1.0f;
return result;
}
#define YAW(euler) euler.y
#define PITCH(euler) euler.x
#define ROLL(euler) euler.z
// float - linear interpolate
inline float lerp(float x, float y, float a) {
return x * (1.0f - a) + (y * a);
}
// vec2 lerp - linear interpolate
template<typename T, glm::precision P>
glm::detail::tvec2<T, P> lerp(const glm::detail::tvec2<T, P>& x, const glm::detail::tvec2<T, P>& y, T a) {
return x * (T(1) - a) + (y * a);
}
// vec3 lerp - linear interpolate
template<typename T, glm::precision P>
glm::detail::tvec3<T, P> lerp(const glm::detail::tvec3<T, P>& x, const glm::detail::tvec3<T, P>& y, T a) {
return x * (T(1) - a) + (y * a);
}
// vec4 lerp - linear interpolate
template<typename T, glm::precision P>
glm::detail::tvec4<T, P> lerp(const glm::detail::tvec4<T, P>& x, const glm::detail::tvec4<T, P>& y, T a) {
return x * (T(1) - a) + (y * a);
}
glm::mat4 createMatFromQuatAndPos(const glm::quat& q, const glm::vec3& p);
glm::quat cancelOutRollAndPitch(const glm::quat& q);
glm::mat4 cancelOutRollAndPitch(const glm::mat4& m);
glm::vec3 transformPoint(const glm::mat4& m, const glm::vec3& p);
glm::vec3 transformVectorFast(const glm::mat4& m, const glm::vec3& v);
glm::vec3 transformVectorFull(const glm::mat4& m, const glm::vec3& v);
// Calculate an orthogonal basis from a primary and secondary axis.
// The uAxis, vAxis & wAxis will form an orthognal basis.
// The primary axis will be the uAxis.
// The vAxis will be as close as possible to to the secondary axis.
void generateBasisVectors(const glm::vec3& primaryAxis, const glm::vec3& secondaryAxis,
glm::vec3& uAxisOut, glm::vec3& vAxisOut, glm::vec3& wAxisOut);
glm::vec2 getFacingDir2D(const glm::quat& rot);
glm::vec2 getFacingDir2D(const glm::mat4& m);
bool isNaN(glm::vec3 value);
bool isNaN(glm::quat value);
#endif // hifi_GLMHelpers_h