overte/interface/src/devices/DdeFaceTracker.cpp
2019-01-28 22:19:31 -08:00

686 lines
25 KiB
C++

//
// DdeFaceTracker.cpp
//
//
// Created by Clement on 8/2/14.
// Copyright 2014 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include "DdeFaceTracker.h"
#include <SharedUtil.h>
#include <QtCore/QCoreApplication>
#include <QtCore/QJsonDocument>
#include <QtCore/QJsonArray>
#include <QtCore/QJsonObject>
#include <QtCore/QTimer>
#include <GLMHelpers.h>
#include <NumericalConstants.h>
#include <FaceshiftConstants.h>
#include "Application.h"
#include "InterfaceLogging.h"
#include "Menu.h"
static const QHostAddress DDE_SERVER_ADDR("127.0.0.1");
static const quint16 DDE_SERVER_PORT = 64204;
static const quint16 DDE_CONTROL_PORT = 64205;
#if defined(Q_OS_WIN)
static const QString DDE_PROGRAM_PATH = "/dde/dde.exe";
#elif defined(Q_OS_MAC)
static const QString DDE_PROGRAM_PATH = "/dde.app/Contents/MacOS/dde";
#endif
static const QStringList DDE_ARGUMENTS = QStringList()
<< "--udp=" + DDE_SERVER_ADDR.toString() + ":" + QString::number(DDE_SERVER_PORT)
<< "--receiver=" + QString::number(DDE_CONTROL_PORT)
<< "--facedet_interval=500" // ms
<< "--headless";
static const int NUM_EXPRESSIONS = 46;
static const int MIN_PACKET_SIZE = (8 + NUM_EXPRESSIONS) * sizeof(float) + sizeof(int);
static const int MAX_NAME_SIZE = 31;
// There's almost but not quite a 1-1 correspondence between DDE's 46 and Faceshift 1.3's 48 packets.
// The best guess at mapping is to:
// - Swap L and R values
// - Skip two Faceshift values: JawChew (22) and LipsLowerDown (37)
static const int DDE_TO_FACESHIFT_MAPPING[] = {
1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14,
16,
18, 17,
19,
23,
21,
// Skip JawChew
20,
25, 24, 27, 26, 29, 28, 31, 30, 33, 32,
34, 35, 36,
// Skip LipsLowerDown
38, 39, 40, 41, 42, 43, 44, 45,
47, 46
};
// The DDE coefficients, overall, range from -0.2 to 1.5 or so. However, individual coefficients typically vary much
// less than this.
static const float DDE_COEFFICIENT_SCALES[] = {
1.0f, // EyeBlink_L
1.0f, // EyeBlink_R
1.0f, // EyeSquint_L
1.0f, // EyeSquint_R
1.0f, // EyeDown_L
1.0f, // EyeDown_R
1.0f, // EyeIn_L
1.0f, // EyeIn_R
1.0f, // EyeOpen_L
1.0f, // EyeOpen_R
1.0f, // EyeOut_L
1.0f, // EyeOut_R
1.0f, // EyeUp_L
1.0f, // EyeUp_R
3.0f, // BrowsD_L
3.0f, // BrowsD_R
3.0f, // BrowsU_C
3.0f, // BrowsU_L
3.0f, // BrowsU_R
1.0f, // JawFwd
2.0f, // JawLeft
1.8f, // JawOpen
1.0f, // JawChew
2.0f, // JawRight
1.5f, // MouthLeft
1.5f, // MouthRight
1.5f, // MouthFrown_L
1.5f, // MouthFrown_R
2.5f, // MouthSmile_L
2.5f, // MouthSmile_R
1.0f, // MouthDimple_L
1.0f, // MouthDimple_R
1.0f, // LipsStretch_L
1.0f, // LipsStretch_R
1.0f, // LipsUpperClose
1.0f, // LipsLowerClose
1.0f, // LipsUpperUp
1.0f, // LipsLowerDown
1.0f, // LipsUpperOpen
1.0f, // LipsLowerOpen
1.5f, // LipsFunnel
2.5f, // LipsPucker
1.5f, // ChinLowerRaise
1.5f, // ChinUpperRaise
1.0f, // Sneer
3.0f, // Puff
1.0f, // CheekSquint_L
1.0f // CheekSquint_R
};
struct DDEPacket {
//roughly in mm
float focal_length[1];
float translation[3];
//quaternion
float rotation[4];
// The DDE coefficients, overall, range from -0.2 to 1.5 or so. However, individual coefficients typically vary much
// less than this.
float expressions[NUM_EXPRESSIONS];
//avatar id selected on the UI
int avatar_id;
//client name, arbitrary length
char name[MAX_NAME_SIZE + 1];
};
static const float STARTING_DDE_MESSAGE_TIME = 0.033f;
static const float DEFAULT_DDE_EYE_CLOSING_THRESHOLD = 0.8f;
static const int CALIBRATION_SAMPLES = 150;
DdeFaceTracker::DdeFaceTracker() :
DdeFaceTracker(QHostAddress::Any, DDE_SERVER_PORT, DDE_CONTROL_PORT)
{
}
DdeFaceTracker::DdeFaceTracker(const QHostAddress& host, quint16 serverPort, quint16 controlPort) :
_ddeProcess(NULL),
_ddeStopping(false),
_host(host),
_serverPort(serverPort),
_controlPort(controlPort),
_lastReceiveTimestamp(0),
_reset(false),
_leftBlinkIndex(0), // see http://support.faceshift.com/support/articles/35129-export-of-blendshapes
_rightBlinkIndex(1),
_leftEyeDownIndex(4),
_rightEyeDownIndex(5),
_leftEyeInIndex(6),
_rightEyeInIndex(7),
_leftEyeOpenIndex(8),
_rightEyeOpenIndex(9),
_browDownLeftIndex(14),
_browDownRightIndex(15),
_browUpCenterIndex(16),
_browUpLeftIndex(17),
_browUpRightIndex(18),
_mouthSmileLeftIndex(28),
_mouthSmileRightIndex(29),
_jawOpenIndex(21),
_lastMessageReceived(0),
_averageMessageTime(STARTING_DDE_MESSAGE_TIME),
_lastHeadTranslation(glm::vec3(0.0f)),
_filteredHeadTranslation(glm::vec3(0.0f)),
_lastBrowUp(0.0f),
_filteredBrowUp(0.0f),
_eyePitch(0.0f),
_eyeYaw(0.0f),
_lastEyePitch(0.0f),
_lastEyeYaw(0.0f),
_filteredEyePitch(0.0f),
_filteredEyeYaw(0.0f),
_longTermAverageEyePitch(0.0f),
_longTermAverageEyeYaw(0.0f),
_lastEyeBlinks(),
_filteredEyeBlinks(),
_lastEyeCoefficients(),
_eyeClosingThreshold("ddeEyeClosingThreshold", DEFAULT_DDE_EYE_CLOSING_THRESHOLD),
_isCalibrating(false),
_calibrationCount(0),
_calibrationValues(),
_calibrationBillboard(NULL),
_calibrationMessage(QString()),
_isCalibrated(false)
{
_coefficients.resize(NUM_FACESHIFT_BLENDSHAPES);
_blendshapeCoefficients.resize(NUM_FACESHIFT_BLENDSHAPES);
_coefficientAverages.resize(NUM_FACESHIFT_BLENDSHAPES);
_calibrationValues.resize(NUM_FACESHIFT_BLENDSHAPES);
_eyeStates[0] = EYE_UNCONTROLLED;
_eyeStates[1] = EYE_UNCONTROLLED;
connect(&_udpSocket, SIGNAL(readyRead()), SLOT(readPendingDatagrams()));
connect(&_udpSocket, SIGNAL(error(QAbstractSocket::SocketError)), SLOT(socketErrorOccurred(QAbstractSocket::SocketError)));
connect(&_udpSocket, SIGNAL(stateChanged(QAbstractSocket::SocketState)),
SLOT(socketStateChanged(QAbstractSocket::SocketState)));
}
DdeFaceTracker::~DdeFaceTracker() {
setEnabled(false);
if (_isCalibrating) {
cancelCalibration();
}
}
void DdeFaceTracker::init() {
FaceTracker::init();
setEnabled(Menu::getInstance()->isOptionChecked(MenuOption::UseCamera) && !_isMuted);
Menu::getInstance()->getActionForOption(MenuOption::CalibrateCamera)->setEnabled(!_isMuted);
}
void DdeFaceTracker::setEnabled(bool enabled) {
if (!_isInitialized) {
// Don't enable until have explicitly initialized
return;
}
#ifdef HAVE_DDE
if (_isCalibrating) {
cancelCalibration();
}
// isOpen() does not work as one might expect on QUdpSocket; don't test isOpen() before closing socket.
_udpSocket.close();
// Terminate any existing DDE process, perhaps left running after an Interface crash.
// Do this even if !enabled in case user reset their settings after crash.
const char* DDE_EXIT_COMMAND = "exit";
_udpSocket.bind(_host, _serverPort);
_udpSocket.writeDatagram(DDE_EXIT_COMMAND, DDE_SERVER_ADDR, _controlPort);
if (enabled && !_ddeProcess) {
_ddeStopping = false;
qCDebug(interfaceapp) << "DDE Face Tracker: Starting";
_ddeProcess = new QProcess(qApp);
connect(_ddeProcess, SIGNAL(finished(int, QProcess::ExitStatus)), SLOT(processFinished(int, QProcess::ExitStatus)));
_ddeProcess->start(QCoreApplication::applicationDirPath() + DDE_PROGRAM_PATH, DDE_ARGUMENTS);
}
if (!enabled && _ddeProcess) {
_ddeStopping = true;
qCDebug(interfaceapp) << "DDE Face Tracker: Stopping";
}
#endif
}
void DdeFaceTracker::processFinished(int exitCode, QProcess::ExitStatus exitStatus) {
if (_ddeProcess) {
if (_ddeStopping) {
qCDebug(interfaceapp) << "DDE Face Tracker: Stopped";
} else {
qCWarning(interfaceapp) << "DDE Face Tracker: Stopped unexpectedly";
Menu::getInstance()->setIsOptionChecked(MenuOption::NoFaceTracking, true);
}
_udpSocket.close();
delete _ddeProcess;
_ddeProcess = NULL;
}
}
void DdeFaceTracker::reset() {
if (_udpSocket.state() == QAbstractSocket::BoundState) {
_reset = true;
qCDebug(interfaceapp) << "DDE Face Tracker: Reset";
const char* DDE_RESET_COMMAND = "reset";
_udpSocket.writeDatagram(DDE_RESET_COMMAND, DDE_SERVER_ADDR, _controlPort);
FaceTracker::reset();
_reset = true;
}
}
void DdeFaceTracker::update(float deltaTime) {
if (!isActive()) {
return;
}
FaceTracker::update(deltaTime);
glm::vec3 headEulers = glm::degrees(glm::eulerAngles(_headRotation));
_estimatedEyePitch = _eyePitch - headEulers.x;
_estimatedEyeYaw = _eyeYaw - headEulers.y;
}
bool DdeFaceTracker::isActive() const {
return (_ddeProcess != NULL);
}
bool DdeFaceTracker::isTracking() const {
static const quint64 ACTIVE_TIMEOUT_USECS = 3000000; //3 secs
return (usecTimestampNow() - _lastReceiveTimestamp < ACTIVE_TIMEOUT_USECS);
}
//private slots and methods
void DdeFaceTracker::socketErrorOccurred(QAbstractSocket::SocketError socketError) {
qCWarning(interfaceapp) << "DDE Face Tracker: Socket error: " << _udpSocket.errorString();
}
void DdeFaceTracker::socketStateChanged(QAbstractSocket::SocketState socketState) {
QString state;
switch(socketState) {
case QAbstractSocket::BoundState:
state = "Bound";
break;
case QAbstractSocket::ClosingState:
state = "Closing";
break;
case QAbstractSocket::ConnectedState:
state = "Connected";
break;
case QAbstractSocket::ConnectingState:
state = "Connecting";
break;
case QAbstractSocket::HostLookupState:
state = "Host Lookup";
break;
case QAbstractSocket::ListeningState:
state = "Listening";
break;
case QAbstractSocket::UnconnectedState:
state = "Unconnected";
break;
}
qCDebug(interfaceapp) << "DDE Face Tracker: Socket: " << state;
}
void DdeFaceTracker::readPendingDatagrams() {
QByteArray buffer;
while (_udpSocket.hasPendingDatagrams()) {
buffer.resize(_udpSocket.pendingDatagramSize());
_udpSocket.readDatagram(buffer.data(), buffer.size());
}
decodePacket(buffer);
}
float DdeFaceTracker::getBlendshapeCoefficient(int index) const {
return (index >= 0 && index < (int)_blendshapeCoefficients.size()) ? _blendshapeCoefficients[index] : 0.0f;
}
void DdeFaceTracker::decodePacket(const QByteArray& buffer) {
_lastReceiveTimestamp = usecTimestampNow();
if (buffer.size() > MIN_PACKET_SIZE) {
if (!_isCalibrated) {
calibrate();
}
bool isFiltering = Menu::getInstance()->isOptionChecked(MenuOption::VelocityFilter);
DDEPacket packet;
int bytesToCopy = glm::min((int)sizeof(packet), buffer.size());
memset(&packet.name, '\n', MAX_NAME_SIZE + 1);
memcpy(&packet, buffer.data(), bytesToCopy);
glm::vec3 translation;
memcpy(&translation, packet.translation, sizeof(packet.translation));
glm::quat rotation;
memcpy(&rotation, &packet.rotation, sizeof(packet.rotation));
if (_reset || (_lastMessageReceived == 0)) {
memcpy(&_referenceTranslation, &translation, sizeof(glm::vec3));
memcpy(&_referenceRotation, &rotation, sizeof(glm::quat));
_reset = false;
}
// Compute relative translation
float LEAN_DAMPING_FACTOR = 75.0f;
translation -= _referenceTranslation;
translation /= LEAN_DAMPING_FACTOR;
translation.x *= -1;
if (isFiltering) {
glm::vec3 linearVelocity = (translation - _lastHeadTranslation) / _averageMessageTime;
const float LINEAR_VELOCITY_FILTER_STRENGTH = 0.3f;
float velocityFilter = glm::clamp(1.0f - glm::length(linearVelocity) *
LINEAR_VELOCITY_FILTER_STRENGTH, 0.0f, 1.0f);
_filteredHeadTranslation = velocityFilter * _filteredHeadTranslation + (1.0f - velocityFilter) * translation;
_lastHeadTranslation = translation;
_headTranslation = _filteredHeadTranslation;
} else {
_headTranslation = translation;
}
// Compute relative rotation
rotation = glm::inverse(_referenceRotation) * rotation;
if (isFiltering) {
glm::quat r = glm::normalize(rotation * glm::inverse(_headRotation));
float theta = 2 * acos(r.w);
glm::vec3 angularVelocity;
if (theta > EPSILON) {
float rMag = glm::length(glm::vec3(r.x, r.y, r.z));
angularVelocity = theta / _averageMessageTime * glm::vec3(r.x, r.y, r.z) / rMag;
} else {
angularVelocity = glm::vec3(0, 0, 0);
}
const float ANGULAR_VELOCITY_FILTER_STRENGTH = 0.3f;
_headRotation = safeMix(_headRotation, rotation, glm::clamp(glm::length(angularVelocity) *
ANGULAR_VELOCITY_FILTER_STRENGTH, 0.0f, 1.0f));
} else {
_headRotation = rotation;
}
// Translate DDE coefficients to Faceshift compatible coefficients
for (int i = 0; i < NUM_EXPRESSIONS; i++) {
_coefficients[DDE_TO_FACESHIFT_MAPPING[i]] = packet.expressions[i];
}
// Calibration
if (_isCalibrating) {
addCalibrationDatum();
}
for (int i = 0; i < NUM_FACESHIFT_BLENDSHAPES; i++) {
_coefficients[i] -= _coefficientAverages[i];
}
// Use BrowsU_C to control both brows' up and down
float browUp = _coefficients[_browUpCenterIndex];
if (isFiltering) {
const float BROW_VELOCITY_FILTER_STRENGTH = 0.5f;
float velocity = fabsf(browUp - _lastBrowUp) / _averageMessageTime;
float velocityFilter = glm::clamp(velocity * BROW_VELOCITY_FILTER_STRENGTH, 0.0f, 1.0f);
_filteredBrowUp = velocityFilter * browUp + (1.0f - velocityFilter) * _filteredBrowUp;
_lastBrowUp = browUp;
browUp = _filteredBrowUp;
_coefficients[_browUpCenterIndex] = browUp;
}
_coefficients[_browUpLeftIndex] = browUp;
_coefficients[_browUpRightIndex] = browUp;
_coefficients[_browDownLeftIndex] = -browUp;
_coefficients[_browDownRightIndex] = -browUp;
// Offset jaw open coefficient
static const float JAW_OPEN_THRESHOLD = 0.1f;
_coefficients[_jawOpenIndex] = _coefficients[_jawOpenIndex] - JAW_OPEN_THRESHOLD;
// Offset smile coefficients
static const float SMILE_THRESHOLD = 0.5f;
_coefficients[_mouthSmileLeftIndex] = _coefficients[_mouthSmileLeftIndex] - SMILE_THRESHOLD;
_coefficients[_mouthSmileRightIndex] = _coefficients[_mouthSmileRightIndex] - SMILE_THRESHOLD;
// Eye pitch and yaw
// EyeDown coefficients work better over both +ve and -ve values than EyeUp values.
// EyeIn coefficients work better over both +ve and -ve values than EyeOut values.
// Pitch and yaw values are relative to the screen.
const float EYE_PITCH_SCALE = -1500.0f; // Sign, scale, and average to be similar to Faceshift values.
_eyePitch = EYE_PITCH_SCALE * (_coefficients[_leftEyeDownIndex] + _coefficients[_rightEyeDownIndex]);
const float EYE_YAW_SCALE = 2000.0f; // Scale and average to be similar to Faceshift values.
_eyeYaw = EYE_YAW_SCALE * (_coefficients[_leftEyeInIndex] + _coefficients[_rightEyeInIndex]);
if (isFiltering) {
const float EYE_VELOCITY_FILTER_STRENGTH = 0.005f;
float pitchVelocity = fabsf(_eyePitch - _lastEyePitch) / _averageMessageTime;
float pitchVelocityFilter = glm::clamp(pitchVelocity * EYE_VELOCITY_FILTER_STRENGTH, 0.0f, 1.0f);
_filteredEyePitch = pitchVelocityFilter * _eyePitch + (1.0f - pitchVelocityFilter) * _filteredEyePitch;
_lastEyePitch = _eyePitch;
_eyePitch = _filteredEyePitch;
float yawVelocity = fabsf(_eyeYaw - _lastEyeYaw) / _averageMessageTime;
float yawVelocityFilter = glm::clamp(yawVelocity * EYE_VELOCITY_FILTER_STRENGTH, 0.0f, 1.0f);
_filteredEyeYaw = yawVelocityFilter * _eyeYaw + (1.0f - yawVelocityFilter) * _filteredEyeYaw;
_lastEyeYaw = _eyeYaw;
_eyeYaw = _filteredEyeYaw;
}
// Velocity filter EyeBlink values
const float DDE_EYEBLINK_SCALE = 3.0f;
float eyeBlinks[] = { DDE_EYEBLINK_SCALE * _coefficients[_leftBlinkIndex],
DDE_EYEBLINK_SCALE * _coefficients[_rightBlinkIndex] };
if (isFiltering) {
const float BLINK_VELOCITY_FILTER_STRENGTH = 0.3f;
for (int i = 0; i < 2; i++) {
float velocity = fabsf(eyeBlinks[i] - _lastEyeBlinks[i]) / _averageMessageTime;
float velocityFilter = glm::clamp(velocity * BLINK_VELOCITY_FILTER_STRENGTH, 0.0f, 1.0f);
_filteredEyeBlinks[i] = velocityFilter * eyeBlinks[i] + (1.0f - velocityFilter) * _filteredEyeBlinks[i];
_lastEyeBlinks[i] = eyeBlinks[i];
}
}
// Finesse EyeBlink values
float eyeCoefficients[2];
if (Menu::getInstance()->isOptionChecked(MenuOption::BinaryEyelidControl)) {
if (_eyeStates[0] == EYE_UNCONTROLLED) {
_eyeStates[0] = EYE_OPEN;
_eyeStates[1] = EYE_OPEN;
}
for (int i = 0; i < 2; i++) {
// Scale EyeBlink values so that they can be used to control both EyeBlink and EyeOpen
// -ve values control EyeOpen; +ve values control EyeBlink
static const float EYE_CONTROL_THRESHOLD = 0.5f; // Resting eye value
eyeCoefficients[i] = (_filteredEyeBlinks[i] - EYE_CONTROL_THRESHOLD) / (1.0f - EYE_CONTROL_THRESHOLD);
// Change to closing or opening states
const float EYE_CONTROL_HYSTERISIS = 0.25f;
float eyeClosingThreshold = getEyeClosingThreshold();
float eyeOpeningThreshold = eyeClosingThreshold - EYE_CONTROL_HYSTERISIS;
if ((_eyeStates[i] == EYE_OPEN || _eyeStates[i] == EYE_OPENING) && eyeCoefficients[i] > eyeClosingThreshold) {
_eyeStates[i] = EYE_CLOSING;
} else if ((_eyeStates[i] == EYE_CLOSED || _eyeStates[i] == EYE_CLOSING)
&& eyeCoefficients[i] < eyeOpeningThreshold) {
_eyeStates[i] = EYE_OPENING;
}
const float EYELID_MOVEMENT_RATE = 10.0f; // units/second
const float EYE_OPEN_SCALE = 0.2f;
if (_eyeStates[i] == EYE_CLOSING) {
// Close eyelid until it's fully closed
float closingValue = _lastEyeCoefficients[i] + EYELID_MOVEMENT_RATE * _averageMessageTime;
if (closingValue >= 1.0f) {
_eyeStates[i] = EYE_CLOSED;
eyeCoefficients[i] = 1.0f;
} else {
eyeCoefficients[i] = closingValue;
}
} else if (_eyeStates[i] == EYE_OPENING) {
// Open eyelid until it meets the current adjusted value
float openingValue = _lastEyeCoefficients[i] - EYELID_MOVEMENT_RATE * _averageMessageTime;
if (openingValue < eyeCoefficients[i] * EYE_OPEN_SCALE) {
_eyeStates[i] = EYE_OPEN;
eyeCoefficients[i] = eyeCoefficients[i] * EYE_OPEN_SCALE;
} else {
eyeCoefficients[i] = openingValue;
}
} else if (_eyeStates[i] == EYE_OPEN) {
// Reduce eyelid movement
eyeCoefficients[i] = eyeCoefficients[i] * EYE_OPEN_SCALE;
} else if (_eyeStates[i] == EYE_CLOSED) {
// Keep eyelid fully closed
eyeCoefficients[i] = 1.0;
}
}
if (_eyeStates[0] == EYE_OPEN && _eyeStates[1] == EYE_OPEN) {
// Couple eyelids
eyeCoefficients[0] = eyeCoefficients[1] = (eyeCoefficients[0] + eyeCoefficients[0]) / 2.0f;
}
_lastEyeCoefficients[0] = eyeCoefficients[0];
_lastEyeCoefficients[1] = eyeCoefficients[1];
} else {
_eyeStates[0] = EYE_UNCONTROLLED;
_eyeStates[1] = EYE_UNCONTROLLED;
eyeCoefficients[0] = _filteredEyeBlinks[0];
eyeCoefficients[1] = _filteredEyeBlinks[1];
}
// Couple eyelid values if configured - use the most "open" value for both
if (Menu::getInstance()->isOptionChecked(MenuOption::CoupleEyelids)) {
float eyeCoefficient = std::min(eyeCoefficients[0], eyeCoefficients[1]);
eyeCoefficients[0] = eyeCoefficient;
eyeCoefficients[1] = eyeCoefficient;
}
// Use EyeBlink values to control both EyeBlink and EyeOpen
if (eyeCoefficients[0] > 0) {
_coefficients[_leftBlinkIndex] = eyeCoefficients[0];
_coefficients[_leftEyeOpenIndex] = 0.0f;
} else {
_coefficients[_leftBlinkIndex] = 0.0f;
_coefficients[_leftEyeOpenIndex] = -eyeCoefficients[0];
}
if (eyeCoefficients[1] > 0) {
_coefficients[_rightBlinkIndex] = eyeCoefficients[1];
_coefficients[_rightEyeOpenIndex] = 0.0f;
} else {
_coefficients[_rightBlinkIndex] = 0.0f;
_coefficients[_rightEyeOpenIndex] = -eyeCoefficients[1];
}
// Scale all coefficients
for (int i = 0; i < NUM_EXPRESSIONS; i++) {
_blendshapeCoefficients[i]
= glm::clamp(DDE_COEFFICIENT_SCALES[i] * _coefficients[i], 0.0f, 1.0f);
}
// Calculate average frame time
const float FRAME_AVERAGING_FACTOR = 0.99f;
quint64 usecsNow = usecTimestampNow();
if (_lastMessageReceived != 0) {
_averageMessageTime = FRAME_AVERAGING_FACTOR * _averageMessageTime
+ (1.0f - FRAME_AVERAGING_FACTOR) * (float)(usecsNow - _lastMessageReceived) / 1000000.0f;
}
_lastMessageReceived = usecsNow;
FaceTracker::countFrame();
} else {
qCWarning(interfaceapp) << "DDE Face Tracker: Decode error";
}
if (_isCalibrating && _calibrationCount > CALIBRATION_SAMPLES) {
finishCalibration();
}
}
void DdeFaceTracker::setEyeClosingThreshold(float eyeClosingThreshold) {
_eyeClosingThreshold.set(eyeClosingThreshold);
}
static const int CALIBRATION_BILLBOARD_WIDTH = 300;
static const int CALIBRATION_BILLBOARD_HEIGHT = 120;
static QString CALIBRATION_INSTRUCTION_MESSAGE = "Hold still to calibrate camera";
void DdeFaceTracker::calibrate() {
if (!Menu::getInstance()->isOptionChecked(MenuOption::UseCamera) || _isMuted) {
return;
}
if (!_isCalibrating) {
qCDebug(interfaceapp) << "DDE Face Tracker: Calibration started";
_isCalibrating = true;
_calibrationCount = 0;
_calibrationMessage = CALIBRATION_INSTRUCTION_MESSAGE + "\n\n";
// FIXME: this overlay probably doesn't work anymore
_calibrationBillboard = new TextOverlay();
glm::vec2 viewport = qApp->getCanvasSize();
_calibrationBillboard->setX((viewport.x - CALIBRATION_BILLBOARD_WIDTH) / 2);
_calibrationBillboard->setY((viewport.y - CALIBRATION_BILLBOARD_HEIGHT) / 2);
_calibrationBillboard->setWidth(CALIBRATION_BILLBOARD_WIDTH);
_calibrationBillboard->setHeight(CALIBRATION_BILLBOARD_HEIGHT);
_calibrationBillboardID = qApp->getOverlays().addOverlay(_calibrationBillboard);
for (int i = 0; i < NUM_FACESHIFT_BLENDSHAPES; i++) {
_calibrationValues[i] = 0.0f;
}
}
}
void DdeFaceTracker::addCalibrationDatum() {
const int LARGE_TICK_INTERVAL = 30;
const int SMALL_TICK_INTERVAL = 6;
int samplesLeft = CALIBRATION_SAMPLES - _calibrationCount;
if (samplesLeft % LARGE_TICK_INTERVAL == 0) {
_calibrationMessage += QString::number(samplesLeft / LARGE_TICK_INTERVAL);
// FIXME: set overlay text
} else if (samplesLeft % SMALL_TICK_INTERVAL == 0) {
_calibrationMessage += ".";
// FIXME: set overlay text
}
for (int i = 0; i < NUM_FACESHIFT_BLENDSHAPES; i++) {
_calibrationValues[i] += _coefficients[i];
}
_calibrationCount += 1;
}
void DdeFaceTracker::cancelCalibration() {
qApp->getOverlays().deleteOverlay(_calibrationBillboardID);
_calibrationBillboard = NULL;
_isCalibrating = false;
qCDebug(interfaceapp) << "DDE Face Tracker: Calibration cancelled";
}
void DdeFaceTracker::finishCalibration() {
qApp->getOverlays().deleteOverlay(_calibrationBillboardID);
_calibrationBillboard = NULL;
_isCalibrating = false;
_isCalibrated = true;
for (int i = 0; i < NUM_FACESHIFT_BLENDSHAPES; i++) {
_coefficientAverages[i] = _calibrationValues[i] / (float)CALIBRATION_SAMPLES;
}
reset();
qCDebug(interfaceapp) << "DDE Face Tracker: Calibration finished";
}