overte/libraries/particles/src/ParticleCollisionSystem.cpp

291 lines
14 KiB
C++

//
// ParticleCollisionSystem.cpp
// hifi
//
// Created by Brad Hefta-Gaub on 12/4/13.
// Copyright (c) 2013 High Fidelity, Inc. All rights reserved.
//
//
#include <algorithm>
#include <AbstractAudioInterface.h>
#include <VoxelTree.h>
#include <AvatarData.h>
#include <CollisionInfo.h>
#include <HeadData.h>
#include <HandData.h>
#include "Particle.h"
#include "ParticleCollisionSystem.h"
#include "ParticleEditHandle.h"
#include "ParticleEditPacketSender.h"
#include "ParticleTree.h"
ParticleCollisionSystem::ParticleCollisionSystem(ParticleEditPacketSender* packetSender,
ParticleTree* particles, VoxelTree* voxels, AbstractAudioInterface* audio, AvatarData* selfAvatar) {
init(packetSender, particles, voxels, audio, selfAvatar);
}
void ParticleCollisionSystem::init(ParticleEditPacketSender* packetSender,
ParticleTree* particles, VoxelTree* voxels, AbstractAudioInterface* audio, AvatarData* selfAvatar) {
_packetSender = packetSender;
_particles = particles;
_voxels = voxels;
_audio = audio;
_selfAvatar = selfAvatar;
}
ParticleCollisionSystem::~ParticleCollisionSystem() {
}
bool ParticleCollisionSystem::updateOperation(OctreeElement* element, void* extraData) {
ParticleCollisionSystem* system = static_cast<ParticleCollisionSystem*>(extraData);
ParticleTreeElement* particleTreeElement = static_cast<ParticleTreeElement*>(element);
// iterate the particles...
std::vector<Particle>& particles = particleTreeElement->getParticles();
uint16_t numberOfParticles = particles.size();
for (uint16_t i = 0; i < numberOfParticles; i++) {
Particle* particle = &particles[i];
system->checkParticle(particle);
}
return true;
}
void ParticleCollisionSystem::update() {
// update all particles
_particles->lockForWrite();
_particles->recurseTreeWithOperation(updateOperation, this);
_particles->unlock();
}
void ParticleCollisionSystem::checkParticle(Particle* particle) {
updateCollisionWithVoxels(particle);
updateCollisionWithParticles(particle);
updateCollisionWithAvatars(particle);
}
void ParticleCollisionSystem::updateCollisionWithVoxels(Particle* particle) {
glm::vec3 center = particle->getPosition() * (float)(TREE_SCALE);
float radius = particle->getRadius() * (float)(TREE_SCALE);
const float ELASTICITY = 0.4f;
const float DAMPING = 0.0f;
const float COLLISION_FREQUENCY = 0.5f;
glm::vec3 penetration;
VoxelDetail* voxelDetails = NULL;
if (_voxels->findSpherePenetration(center, radius, penetration, (void**)&voxelDetails)) {
// let the particles run their collision scripts if they have them
particle->collisionWithVoxel(voxelDetails);
penetration /= (float)(TREE_SCALE);
updateCollisionSound(particle, penetration, COLLISION_FREQUENCY);
applyHardCollision(particle, penetration, ELASTICITY, DAMPING);
delete voxelDetails; // cleanup returned details
}
}
void ParticleCollisionSystem::updateCollisionWithParticles(Particle* particleA) {
glm::vec3 center = particleA->getPosition() * (float)(TREE_SCALE);
float radius = particleA->getRadius() * (float)(TREE_SCALE);
//const float ELASTICITY = 0.4f;
//const float DAMPING = 0.0f;
const float COLLISION_FREQUENCY = 0.5f;
glm::vec3 penetration;
Particle* particleB;
if (_particles->findSpherePenetration(center, radius, penetration, (void**)&particleB)) {
// NOTE: 'penetration' is the depth that 'particleA' overlaps 'particleB'.
// That is, it points from A into B.
// Even if the particles overlap... when the particles are already moving appart
// we don't want to count this as a collision.
glm::vec3 relativeVelocity = particleA->getVelocity() - particleB->getVelocity();
if (glm::dot(relativeVelocity, penetration) > 0.0f) {
particleA->collisionWithParticle(particleB);
particleB->collisionWithParticle(particleA);
glm::vec3 axis = glm::normalize(penetration);
glm::vec3 axialVelocity = glm::dot(relativeVelocity, axis) * axis;
// particles that are in hand are assigned an ureasonably large mass for collisions
// which effectively makes them immovable but allows the other ball to reflect correctly.
const float MAX_MASS = 1.0e6f;
float massA = (particleA->getInHand()) ? MAX_MASS : particleA->getMass();
float massB = (particleB->getInHand()) ? MAX_MASS : particleB->getMass();
float totalMass = massA + massB;
particleA->setVelocity(particleA->getVelocity() - axialVelocity * (2.0f * massB / totalMass));
ParticleEditHandle particleEditHandle(_packetSender, _particles, particleA->getID());
particleEditHandle.updateParticle(particleA->getPosition(), particleA->getRadius(), particleA->getXColor(), particleA->getVelocity(),
particleA->getGravity(), particleA->getDamping(), particleA->getInHand(), particleA->getScript());
particleB->setVelocity(particleB->getVelocity() + axialVelocity * (2.0f * massA / totalMass));
ParticleEditHandle penetratedparticleEditHandle(_packetSender, _particles, particleB->getID());
penetratedparticleEditHandle.updateParticle(particleB->getPosition(), particleB->getRadius(), particleB->getXColor(), particleB->getVelocity(),
particleB->getGravity(), particleB->getDamping(), particleB->getInHand(), particleB->getScript());
penetration /= (float)(TREE_SCALE);
updateCollisionSound(particleA, penetration, COLLISION_FREQUENCY);
}
}
}
void ParticleCollisionSystem::updateCollisionWithAvatars(Particle* particle) {
// particles that are in hand, don't collide with avatars
if (particle->getInHand()) {
return;
}
glm::vec3 center = particle->getPosition() * (float)(TREE_SCALE);
float radius = particle->getRadius() * (float)(TREE_SCALE);
const float ELASTICITY = 0.9f;
const float DAMPING = 0.0f;
const float COLLISION_FREQUENCY = 0.5f;
glm::vec3 penetration;
// first check the selfAvatar if set...
if (_selfAvatar) {
AvatarData* avatar = (AvatarData*)_selfAvatar;
CollisionInfo collision;
if (avatar->findSphereCollision(center, radius, collision)) {
collision._addedVelocity /= (float)(TREE_SCALE);
glm::vec3 relativeVelocity = collision._addedVelocity - particle->getVelocity();
if (glm::dot(relativeVelocity, collision._penetration) < 0.f) {
// only collide when particle and collision point are moving toward each other
// (doing this prevents some "collision snagging" when particle penetrates the object)
// HACK BEGIN: to allow paddle hands to "hold" particles we attenuate soft collisions against the avatar.
// NOTE: the physics are wrong (particles cannot roll) but it IS possible to catch a slow moving particle.
// TODO: make this less hacky when we have more per-collision details
float elasticity = ELASTICITY;
float SLOW_PADDLE_SPEED = 5.0e-5f;
float attenuationFactor = glm::length(collision._addedVelocity) / SLOW_PADDLE_SPEED;
if (attenuationFactor < 1.f) {
collision._addedVelocity *= attenuationFactor;
elasticity *= attenuationFactor;
}
// HACK END
collision._penetration /= (float)(TREE_SCALE);
updateCollisionSound(particle, collision._penetration, COLLISION_FREQUENCY);
applyHardCollision(particle, collision._penetration, elasticity, DAMPING, collision._addedVelocity);
}
}
}
// loop through all the other avatars for potential interactions...
foreach (const SharedNodePointer& node, NodeList::getInstance()->getNodeHash()) {
//qDebug() << "updateCollisionWithAvatars()... node:" << *node << "\n";
if (node->getLinkedData() && node->getType() == NODE_TYPE_AGENT) {
AvatarData* avatar = static_cast<AvatarData*>(node->getLinkedData());
CollisionInfo collision;
if (avatar->findSphereCollision(center, radius, collision)) {
collision._addedVelocity /= (float)(TREE_SCALE);
glm::vec3 relativeVelocity = collision._addedVelocity - particle->getVelocity();
if (glm::dot(relativeVelocity, collision._penetration) < 0.f) {
// HACK BEGIN: to allow paddle hands to "hold" particles we attenuate soft collisions against the avatar.
// NOTE: the physics are wrong (particles cannot roll) but it IS possible to catch a slow moving particle.
// TODO: make this less hacky when we have more per-collision details
float elasticity = ELASTICITY;
float SLOW_PADDLE_SPEED = 5.0e-5f;
float attenuationFactor = glm::length(collision._addedVelocity) / SLOW_PADDLE_SPEED;
if (attenuationFactor < 1.f) {
collision._addedVelocity *= attenuationFactor;
elasticity *= attenuationFactor;
}
// HACK END
collision._penetration /= (float)(TREE_SCALE);
updateCollisionSound(particle, collision._penetration, COLLISION_FREQUENCY);
applyHardCollision(particle, collision._penetration, ELASTICITY, DAMPING, collision._addedVelocity);
}
}
}
}
}
// TODO: convert applyHardCollision() to take a CollisionInfo& instead of penetration + addedVelocity
void ParticleCollisionSystem::applyHardCollision(Particle* particle, const glm::vec3& penetration,
float elasticity, float damping, const glm::vec3& addedVelocity) {
//
// Update the particle in response to a hard collision. Position will be reset exactly
// to outside the colliding surface. Velocity will be modified according to elasticity.
//
// if elasticity = 0.0, collision is inelastic (vel normal to collision is lost)
// if elasticity = 1.0, collision is 100% elastic.
//
glm::vec3 position = particle->getPosition();
glm::vec3 velocity = particle->getVelocity();
const float EPSILON = 0.0f;
float velocityDotPenetration = glm::dot(velocity, penetration);
if (velocityDotPenetration > EPSILON) {
position -= penetration;
static float HALTING_VELOCITY = 0.2f / (float)(TREE_SCALE);
// cancel out the velocity component in the direction of penetration
float penetrationLength = glm::length(penetration);
glm::vec3 direction = penetration / penetrationLength;
velocity -= (glm::dot(velocity, direction) * (1.0f + elasticity)) * direction;
velocity += addedVelocity;
velocity *= glm::clamp(1.f - damping, 0.0f, 1.0f);
if (glm::length(velocity) < HALTING_VELOCITY) {
// If moving really slowly after a collision, and not applying forces, stop altogether
velocity *= 0.f;
}
}
const bool wantDebug = false;
if (wantDebug) {
printf("ParticleCollisionSystem::applyHardCollision() particle id:%d new velocity:%f,%f,%f inHand:%s\n",
particle->getID(), velocity.x, velocity.y, velocity.z, debug::valueOf(particle->getInHand()));
}
ParticleEditHandle particleEditHandle(_packetSender, _particles, particle->getID());
particleEditHandle.updateParticle(position, particle->getRadius(), particle->getXColor(), velocity,
particle->getGravity(), particle->getDamping(), particle->getInHand(), particle->getScript());
}
void ParticleCollisionSystem::updateCollisionSound(Particle* particle, const glm::vec3 &penetration, float frequency) {
// consider whether to have the collision make a sound
const float AUDIBLE_COLLISION_THRESHOLD = 0.1f;
const float COLLISION_LOUDNESS = 1.f;
const float DURATION_SCALING = 0.004f;
const float NOISE_SCALING = 0.1f;
glm::vec3 velocity = particle->getVelocity() * (float)(TREE_SCALE);
/*
// how do we want to handle this??
//
glm::vec3 gravity = particle->getGravity() * (float)(TREE_SCALE);
if (glm::length(gravity) > EPSILON) {
// If gravity is on, remove the effect of gravity on velocity for this
// frame, so that we are not constantly colliding with the surface
velocity -= _scale * glm::length(gravity) * GRAVITY_EARTH * deltaTime * glm::normalize(gravity);
}
*/
float velocityTowardCollision = glm::dot(velocity, glm::normalize(penetration));
float velocityTangentToCollision = glm::length(velocity) - velocityTowardCollision;
if (velocityTowardCollision > AUDIBLE_COLLISION_THRESHOLD) {
// Volume is proportional to collision velocity
// Base frequency is modified upward by the angle of the collision
// Noise is a function of the angle of collision
// Duration of the sound is a function of both base frequency and velocity of impact
_audio->startCollisionSound(
std::min(COLLISION_LOUDNESS * velocityTowardCollision, 1.f),
frequency * (1.f + velocityTangentToCollision / velocityTowardCollision),
std::min(velocityTangentToCollision / velocityTowardCollision * NOISE_SCALING, 1.f),
1.f - DURATION_SCALING * powf(frequency, 0.5f) / velocityTowardCollision, false);
}
}