overte/libraries/animation/src/Rig.cpp
Anthony J. Thibault d993d39718 Bug fix for deriveBodyFromHMDSensor calculations
The calculation that determined where the body position relative to the HMD
was incorrect, one of the components was in the wrong coordinate frame.

Now use the skeleton's bind pose to compute the proper avatar offsets for the eyes, neck and hips.
Use these offsets to calculate where the hips should be given a specific hmd position and orientation.

Also, added a bug fix for Rig, which would cause a -1 index deference when an avatar was missing
certain named joints, such as, "LeftEye", "Neck" and "Head".
2015-09-30 16:28:33 -07:00

1235 lines
52 KiB
C++

//
// Rig.cpp
// libraries/animation/src/
//
// Created by Howard Stearns, Seth Alves, Anthony Thibault, Andrew Meadows on 7/15/15.
// Copyright (c) 2015 High Fidelity, Inc. All rights reserved.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include "Rig.h"
#include <glm/gtx/vector_angle.hpp>
#include <queue>
#include "NumericalConstants.h"
#include "AnimationHandle.h"
#include "AnimationLogging.h"
#include "AnimSkeleton.h"
#include "DebugDraw.h"
#include "Rig.h"
void Rig::HeadParameters::dump() const {
qCDebug(animation, "HeadParameters =");
qCDebug(animation, " leanSideways = %0.5f", (double)leanSideways);
qCDebug(animation, " leanForward = %0.5f", (double)leanForward);
qCDebug(animation, " torsoTwist = %0.5f", (double)torsoTwist);
glm::vec3 axis = glm::axis(localHeadOrientation);
float theta = glm::angle(localHeadOrientation);
qCDebug(animation, " localHeadOrientation axis = (%.5f, %.5f, %.5f), theta = %0.5f", (double)axis.x, (double)axis.y, (double)axis.z, (double)theta);
axis = glm::axis(worldHeadOrientation);
theta = glm::angle(worldHeadOrientation);
qCDebug(animation, " localHead pitch = %.5f, yaw = %.5f, roll = %.5f", (double)localHeadPitch, (double)localHeadYaw, (double)localHeadRoll);
qCDebug(animation, " localHeadPosition = (%.5f, %.5f, %.5f)", (double)localHeadPosition.x, (double)localHeadPosition.y, (double)localHeadPosition.z);
qCDebug(animation, " isInHMD = %s", isInHMD ? "true" : "false");
qCDebug(animation, " worldHeadOrientation axis = (%.5f, %.5f, %.5f), theta = %0.5f", (double)axis.x, (double)axis.y, (double)axis.z, (double)theta);
axis = glm::axis(modelRotation);
theta = glm::angle(modelRotation);
qCDebug(animation, " modelRotation axis = (%.5f, %.5f, %.5f), theta = %0.5f", (double)axis.x, (double)axis.y, (double)axis.z, (double)theta);
qCDebug(animation, " modelTranslation = (%.5f, %.5f, %.5f)", (double)modelTranslation.x, (double)modelTranslation.y, (double)modelTranslation.z);
qCDebug(animation, " eyeLookAt = (%.5f, %.5f, %.5f)", (double)eyeLookAt.x, (double)eyeLookAt.y, (double)eyeLookAt.z);
qCDebug(animation, " eyeSaccade = (%.5f, %.5f, %.5f)", (double)eyeSaccade.x, (double)eyeSaccade.y, (double)eyeSaccade.z);
qCDebug(animation, " leanJointIndex = %.d", leanJointIndex);
qCDebug(animation, " neckJointIndex = %.d", neckJointIndex);
qCDebug(animation, " leftEyeJointIndex = %.d", leftEyeJointIndex);
qCDebug(animation, " rightEyeJointIndex = %.d", rightEyeJointIndex);
qCDebug(animation, " isTalking = %s", isTalking ? "true" : "false");
}
void insertSorted(QList<AnimationHandlePointer>& handles, const AnimationHandlePointer& handle) {
for (QList<AnimationHandlePointer>::iterator it = handles.begin(); it != handles.end(); it++) {
if (handle->getPriority() > (*it)->getPriority()) {
handles.insert(it, handle);
return;
}
}
handles.append(handle);
}
AnimationHandlePointer Rig::createAnimationHandle() {
AnimationHandlePointer handle(new AnimationHandle(getRigPointer()));
_animationHandles.append(handle);
return handle;
}
void Rig::removeAnimationHandle(const AnimationHandlePointer& handle) {
handle->stop();
// FIXME? Do we need to also animationHandle->clearJoints()? deleteAnimations(), below, was first written to do so, but did not first stop it.
_animationHandles.removeOne(handle);
}
void Rig::startAnimation(const QString& url, float fps, float priority,
bool loop, bool hold, float firstFrame, float lastFrame, const QStringList& maskedJoints) {
// This is different than startAnimationByRole, in which we use the existing values if the animation already exists.
// Here we reuse the animation handle if possible, but in any case, we set the values to those given (or defaulted).
AnimationHandlePointer handle = nullptr;
foreach (const AnimationHandlePointer& candidate, _animationHandles) {
if (candidate->getURL() == url) {
handle = candidate;
}
}
if (!handle) {
handle = createAnimationHandle();
handle->setURL(url);
}
handle->setFade(1.0f); // If you want to fade, use the startAnimationByRole system.
handle->setFPS(fps);
handle->setPriority(priority);
handle->setLoop(loop);
handle->setHold(hold);
handle->setFirstFrame(firstFrame);
handle->setLastFrame(lastFrame);
handle->setMaskedJoints(maskedJoints);
handle->start();
}
AnimationHandlePointer Rig::addAnimationByRole(const QString& role, const QString& url, float fps, float priority,
bool loop, bool hold, float firstFrame, float lastFrame, const QStringList& maskedJoints, bool startAutomatically) {
// check for a configured animation for the role
//qCDebug(animation) << "addAnimationByRole" << role << url << fps << priority << loop << hold << firstFrame << lastFrame << maskedJoints << startAutomatically;
foreach (const AnimationHandlePointer& candidate, _animationHandles) {
if (candidate->getRole() == role) {
if (startAutomatically) {
candidate->start();
}
return candidate;
}
}
AnimationHandlePointer handle = createAnimationHandle();
QString standard = "";
if (url.isEmpty()) { // Default animations for fight club
const QString& base = "https://hifi-public.s3.amazonaws.com/ozan/anim/standard_anims/";
if (role == "walk") {
standard = base + "walk_fwd.fbx";
} else if (role == "backup") {
standard = base + "walk_bwd.fbx";
} else if (role == "leftTurn") {
standard = base + "turn_left.fbx";
} else if (role == "rightTurn") {
standard = base + "turn_right.fbx";
} else if (role == "leftStrafe") {
standard = base + "strafe_left.fbx";
} else if (role == "rightStrafe") {
standard = base + "strafe_right.fbx";
} else if (role == "idle") {
standard = base + "idle.fbx";
fps = 25.0f;
}
if (!standard.isEmpty()) {
loop = true;
}
}
handle->setRole(role);
handle->setURL(url.isEmpty() ? standard : url);
handle->setFPS(fps);
handle->setPriority(priority);
handle->setLoop(loop);
handle->setHold(hold);
handle->setFirstFrame(firstFrame);
handle->setLastFrame(lastFrame);
handle->setMaskedJoints(maskedJoints);
if (startAutomatically) {
handle->start();
}
return handle;
}
const float FADE_FRAMES = 30.0f;
const float FRAMES_PER_SECOND = 30.0f;
void Rig::startAnimationByRole(const QString& role, const QString& url, float fps, float priority,
bool loop, bool hold, float firstFrame, float lastFrame, const QStringList& maskedJoints) {
AnimationHandlePointer handle = addAnimationByRole(role, url, fps, priority, loop, hold, firstFrame, lastFrame, maskedJoints, true);
handle->setFadePerSecond(FRAMES_PER_SECOND / FADE_FRAMES); // For now. Could be individualized later.
}
void Rig::stopAnimationByRole(const QString& role) {
foreach (const AnimationHandlePointer& handle, getRunningAnimations()) {
if (handle->getRole() == role) {
handle->setFadePerSecond(-(FRAMES_PER_SECOND / FADE_FRAMES)); // For now. Could be individualized later.
}
}
}
void Rig::stopAnimation(const QString& url) {
foreach (const AnimationHandlePointer& handle, getRunningAnimations()) {
if (handle->getURL() == url) {
handle->setFade(0.0f); // right away. Will be remove during updateAnimations, without locking
handle->setFadePerSecond(-(FRAMES_PER_SECOND / FADE_FRAMES)); // so that the updateAnimation code notices
}
}
}
bool Rig::removeRunningAnimation(AnimationHandlePointer animationHandle) {
return _runningAnimations.removeOne(animationHandle);
}
void Rig::addRunningAnimation(AnimationHandlePointer animationHandle) {
insertSorted(_runningAnimations, animationHandle);
}
bool Rig::isRunningAnimation(AnimationHandlePointer animationHandle) {
return _runningAnimations.contains(animationHandle);
}
bool Rig::isRunningRole(const QString& role) { //obviously, there are more efficient ways to do this
for (auto animation : _runningAnimations) {
if ((animation->getRole() == role) && (animation->getFadePerSecond() >= 0.0f)) { // Don't count those being faded out
return true;
}
}
return false;
}
void Rig::deleteAnimations() {
for (auto animation : _animationHandles) {
removeAnimationHandle(animation);
}
_animationHandles.clear();
}
void Rig::destroyAnimGraph() {
_animSkeleton = nullptr;
_animLoader = nullptr;
_animNode = nullptr;
}
void Rig::initJointStates(QVector<JointState> states, glm::mat4 rootTransform,
int rootJointIndex,
int leftHandJointIndex,
int leftElbowJointIndex,
int leftShoulderJointIndex,
int rightHandJointIndex,
int rightElbowJointIndex,
int rightShoulderJointIndex) {
_jointStates = states;
_rootJointIndex = rootJointIndex;
_leftHandJointIndex = leftHandJointIndex;
_leftElbowJointIndex = leftElbowJointIndex;
_leftShoulderJointIndex = leftShoulderJointIndex;
_rightHandJointIndex = rightHandJointIndex;
_rightElbowJointIndex = rightElbowJointIndex;
_rightShoulderJointIndex = rightShoulderJointIndex;
initJointTransforms(rootTransform);
int numStates = _jointStates.size();
for (int i = 0; i < numStates; ++i) {
_jointStates[i].buildConstraint();
}
for (int i = 0; i < _jointStates.size(); i++) {
_jointStates[i].slaveVisibleTransform();
}
}
// We could build and cache a dictionary, too....
// Should we be using .fst mapping instead/also?
int Rig::indexOfJoint(const QString& jointName) {
for (int i = 0; i < _jointStates.count(); i++) {
if (_jointStates[i].getName() == jointName) {
return i;
}
}
return -1;
}
void Rig::initJointTransforms(glm::mat4 rootTransform) {
// compute model transforms
int numStates = _jointStates.size();
for (int i = 0; i < numStates; ++i) {
JointState& state = _jointStates[i];
int parentIndex = state.getParentIndex();
if (parentIndex == -1) {
state.initTransform(rootTransform);
} else {
const JointState& parentState = _jointStates.at(parentIndex);
state.initTransform(parentState.getTransform());
}
}
}
void Rig::clearJointTransformTranslation(int jointIndex) {
if (jointIndex == -1 || jointIndex >= _jointStates.size()) {
return;
}
_jointStates[jointIndex].clearTransformTranslation();
}
void Rig::reset(const QVector<FBXJoint>& fbxJoints) {
if (_jointStates.isEmpty()) {
return;
}
for (int i = 0; i < _jointStates.size(); i++) {
_jointStates[i].setRotationInConstrainedFrame(fbxJoints.at(i).rotation, 0.0f);
}
}
JointState Rig::getJointState(int jointIndex) const {
if (jointIndex == -1 || jointIndex >= _jointStates.size()) {
return JointState();
}
return _jointStates[jointIndex];
}
bool Rig::getJointStateRotation(int index, glm::quat& rotation) const {
if (index == -1 || index >= _jointStates.size()) {
return false;
}
const JointState& state = _jointStates.at(index);
rotation = state.getRotationInConstrainedFrame();
return !state.rotationIsDefault(rotation);
}
bool Rig::getVisibleJointState(int index, glm::quat& rotation) const {
if (index == -1 || index >= _jointStates.size()) {
return false;
}
const JointState& state = _jointStates.at(index);
rotation = state.getVisibleRotationInConstrainedFrame();
return !state.rotationIsDefault(rotation);
}
void Rig::clearJointState(int index) {
if (index != -1 && index < _jointStates.size()) {
JointState& state = _jointStates[index];
state.setRotationInConstrainedFrame(glm::quat(), 0.0f);
}
}
void Rig::clearJointStates() {
_jointStates.clear();
}
void Rig::clearJointAnimationPriority(int index) {
if (index != -1 && index < _jointStates.size()) {
_jointStates[index].setAnimationPriority(0.0f);
}
}
float Rig::getJointAnimatinoPriority(int index) {
if (index != -1 && index < _jointStates.size()) {
return _jointStates[index].getAnimationPriority();
}
return 0.0f;
}
void Rig::setJointAnimatinoPriority(int index, float newPriority) {
if (index != -1 && index < _jointStates.size()) {
_jointStates[index].setAnimationPriority(newPriority);
}
}
void Rig::setJointState(int index, bool valid, const glm::quat& rotation, float priority) {
if (index != -1 && index < _jointStates.size()) {
JointState& state = _jointStates[index];
if (valid) {
state.setRotationInConstrainedFrame(rotation, priority);
} else {
state.restoreRotation(1.0f, priority);
}
}
}
void Rig::restoreJointRotation(int index, float fraction, float priority) {
if (index != -1 && index < _jointStates.size()) {
_jointStates[index].restoreRotation(fraction, priority);
}
}
bool Rig::getJointPositionInWorldFrame(int jointIndex, glm::vec3& position,
glm::vec3 translation, glm::quat rotation) const {
if (jointIndex == -1 || jointIndex >= _jointStates.size()) {
return false;
}
// position is in world-frame
position = translation + rotation * _jointStates[jointIndex].getPosition();
return true;
}
bool Rig::getJointPosition(int jointIndex, glm::vec3& position) const {
if (jointIndex == -1 || jointIndex >= _jointStates.size()) {
return false;
}
// position is in model-frame
position = extractTranslation(_jointStates[jointIndex].getTransform());
return true;
}
bool Rig::getJointRotationInWorldFrame(int jointIndex, glm::quat& result, const glm::quat& rotation) const {
if (jointIndex == -1 || jointIndex >= _jointStates.size()) {
return false;
}
result = rotation * _jointStates[jointIndex].getRotation();
return true;
}
bool Rig::getJointRotation(int jointIndex, glm::quat& rotation) const {
if (jointIndex == -1 || jointIndex >= _jointStates.size()) {
return false;
}
rotation = _jointStates[jointIndex].getRotation();
return true;
}
bool Rig::getJointCombinedRotation(int jointIndex, glm::quat& result, const glm::quat& rotation) const {
if (jointIndex == -1 || jointIndex >= _jointStates.size()) {
return false;
}
result = rotation * _jointStates[jointIndex].getRotation();
return true;
}
bool Rig::getVisibleJointPositionInWorldFrame(int jointIndex, glm::vec3& position,
glm::vec3 translation, glm::quat rotation) const {
if (jointIndex == -1 || jointIndex >= _jointStates.size()) {
return false;
}
// position is in world-frame
position = translation + rotation * _jointStates[jointIndex].getVisiblePosition();
return true;
}
bool Rig::getVisibleJointRotationInWorldFrame(int jointIndex, glm::quat& result, glm::quat rotation) const {
if (jointIndex == -1 || jointIndex >= _jointStates.size()) {
return false;
}
result = rotation * _jointStates[jointIndex].getVisibleRotation();
return true;
}
glm::mat4 Rig::getJointTransform(int jointIndex) const {
if (jointIndex == -1 || jointIndex >= _jointStates.size()) {
return glm::mat4();
}
return _jointStates[jointIndex].getTransform();
}
glm::mat4 Rig::getJointVisibleTransform(int jointIndex) const {
if (jointIndex == -1 || jointIndex >= _jointStates.size()) {
return glm::mat4();
}
return _jointStates[jointIndex].getVisibleTransform();
}
void Rig::computeMotionAnimationState(float deltaTime, const glm::vec3& worldPosition, const glm::vec3& worldVelocity, const glm::quat& worldRotation) {
glm::vec3 front = worldRotation * IDENTITY_FRONT;
// It can be more accurate/smooth to use velocity rather than position,
// but some modes (e.g., hmd standing) update position without updating velocity.
// It's very hard to debug hmd standing. (Look down at yourself, or have a second person observe. HMD third person is a bit undefined...)
// So, let's create our own workingVelocity from the worldPosition...
glm::vec3 positionDelta = worldPosition - _lastPosition;
glm::vec3 workingVelocity = positionDelta / deltaTime;
#if !WANT_DEBUG
// But for smoothest (non-hmd standing) results, go ahead and use velocity:
if (!positionDelta.x && !positionDelta.y && !positionDelta.z) {
workingVelocity = worldVelocity;
}
#endif
if (_enableAnimGraph) {
glm::vec3 localVel = glm::inverse(worldRotation) * workingVelocity;
float forwardSpeed = glm::dot(localVel, IDENTITY_FRONT);
float lateralSpeed = glm::dot(localVel, IDENTITY_RIGHT);
float turningSpeed = glm::orientedAngle(front, _lastFront, IDENTITY_UP) / deltaTime;
// sine wave LFO var for testing.
static float t = 0.0f;
_animVars.set("sine", static_cast<float>(0.5 * sin(t) + 0.5));
// default anim vars to notMoving and notTurning
_animVars.set("isMovingForward", false);
_animVars.set("isMovingBackward", false);
_animVars.set("isMovingLeft", false);
_animVars.set("isMovingRight", false);
_animVars.set("isNotMoving", true);
_animVars.set("isTurningLeft", false);
_animVars.set("isTurningRight", false);
_animVars.set("isNotTurning", true);
const float ANIM_WALK_SPEED = 1.4f; // m/s
_animVars.set("walkTimeScale", glm::clamp(0.5f, 2.0f, glm::length(localVel) / ANIM_WALK_SPEED));
const float MOVE_ENTER_SPEED_THRESHOLD = 0.2f; // m/sec
const float MOVE_EXIT_SPEED_THRESHOLD = 0.07f; // m/sec
const float TURN_ENTER_SPEED_THRESHOLD = 0.5f; // rad/sec
const float TURN_EXIT_SPEED_THRESHOLD = 0.2f; // rad/sec
float moveThresh;
if (_state != RigRole::Move) {
moveThresh = MOVE_ENTER_SPEED_THRESHOLD;
} else {
moveThresh = MOVE_EXIT_SPEED_THRESHOLD;
}
float turnThresh;
if (_state != RigRole::Turn) {
turnThresh = TURN_ENTER_SPEED_THRESHOLD;
} else {
turnThresh = TURN_EXIT_SPEED_THRESHOLD;
}
if (glm::length(localVel) > moveThresh) {
if (fabsf(forwardSpeed) > 0.5f * fabsf(lateralSpeed)) {
if (forwardSpeed > 0.0f) {
// forward
_animVars.set("isMovingForward", true);
_animVars.set("isNotMoving", false);
} else {
// backward
_animVars.set("isMovingBackward", true);
_animVars.set("isNotMoving", false);
}
} else {
if (lateralSpeed > 0.0f) {
// right
_animVars.set("isMovingRight", true);
_animVars.set("isNotMoving", false);
} else {
// left
_animVars.set("isMovingLeft", true);
_animVars.set("isNotMoving", false);
}
}
_state = RigRole::Move;
} else {
if (fabsf(turningSpeed) > turnThresh) {
if (turningSpeed > 0.0f) {
// turning right
_animVars.set("isTurningRight", true);
_animVars.set("isNotTurning", false);
} else {
// turning left
_animVars.set("isTurningLeft", true);
_animVars.set("isNotTurning", false);
}
_state = RigRole::Turn;
} else {
// idle
_state = RigRole::Idle;
}
}
t += deltaTime;
}
if (_enableRig) {
bool isMoving = false;
glm::vec3 right = worldRotation * IDENTITY_RIGHT;
const float PERCEPTIBLE_DELTA = 0.001f;
const float PERCEPTIBLE_SPEED = 0.1f;
// Note: Separately, we've arranged for starting/stopping animations by role (as we've done here) to pick up where they've left off when fading,
// so that you wouldn't notice the start/stop if it happens fast enough (e.g., one frame). But the print below would still be noisy.
float forwardSpeed = glm::dot(workingVelocity, front);
float rightLateralSpeed = glm::dot(workingVelocity, right);
float rightTurningDelta = glm::orientedAngle(front, _lastFront, IDENTITY_UP);
float rightTurningSpeed = rightTurningDelta / deltaTime;
bool isTurning = (std::abs(rightTurningDelta) > PERCEPTIBLE_DELTA) && (std::abs(rightTurningSpeed) > PERCEPTIBLE_SPEED);
bool isStrafing = std::abs(rightLateralSpeed) > PERCEPTIBLE_SPEED;
auto updateRole = [&](const QString& role, bool isOn) {
isMoving = isMoving || isOn;
if (isOn) {
if (!isRunningRole(role)) {
qCDebug(animation) << "Rig STARTING" << role;
startAnimationByRole(role);
}
} else {
if (isRunningRole(role)) {
qCDebug(animation) << "Rig stopping" << role;
stopAnimationByRole(role);
}
}
};
updateRole("walk", forwardSpeed > PERCEPTIBLE_SPEED);
updateRole("backup", forwardSpeed < -PERCEPTIBLE_SPEED);
updateRole("rightTurn", isTurning && (rightTurningSpeed > 0.0f));
updateRole("leftTurn", isTurning && (rightTurningSpeed < 0.0f));
isStrafing = isStrafing && !isMoving;
updateRole("rightStrafe", isStrafing && (rightLateralSpeed > 0.0f));
updateRole("leftStrafe", isStrafing && (rightLateralSpeed < 0.0f));
updateRole("idle", !isMoving); // Must be last, as it makes isMoving bogus.
}
_lastFront = front;
_lastPosition = worldPosition;
}
void Rig::updateAnimations(float deltaTime, glm::mat4 rootTransform) {
if (_enableAnimGraph) {
if (!_animNode) {
return;
}
// evaluate the animation
AnimNode::Triggers triggersOut;
AnimPoseVec poses = _animNode->evaluate(_animVars, deltaTime, triggersOut);
_animVars.clearTriggers();
for (auto& trigger : triggersOut) {
_animVars.setTrigger(trigger);
}
clearJointStatePriorities();
// copy poses into jointStates
const float PRIORITY = 1.0f;
for (size_t i = 0; i < poses.size(); i++) {
setJointRotationInConstrainedFrame((int)i, glm::inverse(_animSkeleton->getRelativeBindPose(i).rot) * poses[i].rot, PRIORITY, false, 1.0f);
}
} else {
// First normalize the fades so that they sum to 1.0.
// update the fade data in each animation (not normalized as they are an independent propert of animation)
foreach (const AnimationHandlePointer& handle, _runningAnimations) {
float fadePerSecond = handle->getFadePerSecond();
float fade = handle->getFade();
if (fadePerSecond != 0.0f) {
fade += fadePerSecond * deltaTime;
if ((0.0f >= fade) || (fade >= 1.0f)) {
fade = glm::clamp(fade, 0.0f, 1.0f);
handle->setFadePerSecond(0.0f);
}
handle->setFade(fade);
if (fade <= 0.0f) { // stop any finished animations now
handle->setRunning(false, false); // but do not restore joints as it causes a flicker
}
}
}
// sum the remaining fade data
float fadeTotal = 0.0f;
foreach (const AnimationHandlePointer& handle, _runningAnimations) {
fadeTotal += handle->getFade();
}
float fadeSumSoFar = 0.0f;
foreach (const AnimationHandlePointer& handle, _runningAnimations) {
handle->setPriority(1.0f);
// if no fadeTotal, everyone's (typically just one running) is starting at zero. In that case, blend equally.
float normalizedFade = (fadeTotal != 0.0f) ? (handle->getFade() / fadeTotal) : (1.0f / _runningAnimations.count());
assert(normalizedFade != 0.0f);
// simulate() will blend each animation result into the result so far, based on the pairwise mix at at each step.
// i.e., slerp the 'mix' distance from the result so far towards this iteration's animation result.
// The formula here for mix is based on the idea that, at each step:
// fadeSum is to normalizedFade, as (1 - mix) is to mix
// i.e., fadeSumSoFar/normalizedFade = (1 - mix)/mix
// Then we solve for mix.
// Sanity check: For the first animation, fadeSum = 0, and the mix will always be 1.
// Sanity check: For equal blending, the formula is equivalent to mix = 1 / nAnimationsSoFar++
float mix = 1.0f / ((fadeSumSoFar / normalizedFade) + 1.0f);
assert((0.0f <= mix) && (mix <= 1.0f));
fadeSumSoFar += normalizedFade;
handle->setMix(mix);
handle->simulate(deltaTime);
}
}
for (int i = 0; i < _jointStates.size(); i++) {
updateJointState(i, rootTransform);
}
for (int i = 0; i < _jointStates.size(); i++) {
_jointStates[i].resetTransformChanged();
}
}
bool Rig::setJointPosition(int jointIndex, const glm::vec3& position, const glm::quat& rotation, bool useRotation,
int lastFreeIndex, bool allIntermediatesFree, const glm::vec3& alignment, float priority,
const QVector<int>& freeLineage, glm::mat4 rootTransform) {
if (jointIndex == -1 || _jointStates.isEmpty()) {
return false;
}
if (freeLineage.isEmpty()) {
return false;
}
if (lastFreeIndex == -1) {
lastFreeIndex = freeLineage.last();
}
// this is a cyclic coordinate descent algorithm: see
// http://www.ryanjuckett.com/programming/animation/21-cyclic-coordinate-descent-in-2d
const int ITERATION_COUNT = 1;
glm::vec3 worldAlignment = alignment;
for (int i = 0; i < ITERATION_COUNT; i++) {
// first, try to rotate the end effector as close as possible to the target rotation, if any
glm::quat endRotation;
if (useRotation) {
JointState& state = _jointStates[jointIndex];
state.setRotationInBindFrame(rotation, priority);
endRotation = state.getRotationInBindFrame();
}
// then, we go from the joint upwards, rotating the end as close as possible to the target
glm::vec3 endPosition = extractTranslation(_jointStates[jointIndex].getTransform());
for (int j = 1; freeLineage.at(j - 1) != lastFreeIndex; j++) {
int index = freeLineage.at(j);
JointState& state = _jointStates[index];
if (!(state.getIsFree() || allIntermediatesFree)) {
continue;
}
glm::vec3 jointPosition = extractTranslation(state.getTransform());
glm::vec3 jointVector = endPosition - jointPosition;
glm::quat oldCombinedRotation = state.getRotation();
glm::quat combinedDelta;
float combinedWeight;
if (useRotation) {
combinedDelta = safeMix(rotation * glm::inverse(endRotation),
rotationBetween(jointVector, position - jointPosition), 0.5f);
combinedWeight = 2.0f;
} else {
combinedDelta = rotationBetween(jointVector, position - jointPosition);
combinedWeight = 1.0f;
}
if (alignment != glm::vec3() && j > 1) {
jointVector = endPosition - jointPosition;
glm::vec3 positionSum;
for (int k = j - 1; k > 0; k--) {
int index = freeLineage.at(k);
updateJointState(index, rootTransform);
positionSum += extractTranslation(_jointStates.at(index).getTransform());
}
glm::vec3 projectedCenterOfMass = glm::cross(jointVector,
glm::cross(positionSum / (j - 1.0f) - jointPosition, jointVector));
glm::vec3 projectedAlignment = glm::cross(jointVector, glm::cross(worldAlignment, jointVector));
const float LENGTH_EPSILON = 0.001f;
if (glm::length(projectedCenterOfMass) > LENGTH_EPSILON && glm::length(projectedAlignment) > LENGTH_EPSILON) {
combinedDelta = safeMix(combinedDelta, rotationBetween(projectedCenterOfMass, projectedAlignment),
1.0f / (combinedWeight + 1.0f));
}
}
state.applyRotationDelta(combinedDelta, true, priority);
glm::quat actualDelta = state.getRotation() * glm::inverse(oldCombinedRotation);
endPosition = actualDelta * jointVector + jointPosition;
if (useRotation) {
endRotation = actualDelta * endRotation;
}
}
}
// now update the joint states from the top
for (int j = freeLineage.size() - 1; j >= 0; j--) {
updateJointState(freeLineage.at(j), rootTransform);
}
return true;
}
void Rig::inverseKinematics(int endIndex, glm::vec3 targetPosition, const glm::quat& targetRotation, float priority,
const QVector<int>& freeLineage, glm::mat4 rootTransform) {
// NOTE: targetRotation is from in model-frame
if (endIndex == -1 || _jointStates.isEmpty()) {
return;
}
if (disableHands || (_enableAnimGraph && _animSkeleton)) {
// the hand data goes through a different path: Rig::updateFromHandParameters() --> early-exit
return;
}
if (freeLineage.isEmpty()) {
return;
}
// store and remember topmost parent transform
glm::mat4 topParentTransform;
{
int index = freeLineage.last();
const JointState& state = _jointStates.at(index);
int parentIndex = state.getParentIndex();
if (parentIndex == -1) {
topParentTransform = rootTransform;
} else {
topParentTransform = _jointStates[parentIndex].getTransform();
}
}
// relax toward default rotation
// NOTE: ideally this should use dt and a relaxation timescale to compute how much to relax
int numFree = freeLineage.size();
for (int j = 0; j < numFree; j++) {
int nextIndex = freeLineage.at(j);
JointState& nextState = _jointStates[nextIndex];
if (! nextState.getIsFree()) {
continue;
}
// Apply the zero rotationDelta, but use mixRotationDelta() which blends a bit of the default pose
// in the process. This provides stability to the IK solution for most models.
float mixFactor = 0.08f;
nextState.mixRotationDelta(glm::quat(), mixFactor, priority);
}
// this is a cyclic coordinate descent algorithm: see
// http://www.ryanjuckett.com/programming/animation/21-cyclic-coordinate-descent-in-2d
// keep track of the position of the end-effector
JointState& endState = _jointStates[endIndex];
glm::vec3 endPosition = endState.getPosition();
float distanceToGo = glm::distance(targetPosition, endPosition);
const int MAX_ITERATION_COUNT = 3;
const float ACCEPTABLE_IK_ERROR = 0.005f; // 5mm
int numIterations = 0;
do {
++numIterations;
// moving up, rotate each free joint to get endPosition closer to target
for (int j = 1; j < numFree; j++) {
int nextIndex = freeLineage.at(j);
JointState& nextState = _jointStates[nextIndex];
if (! nextState.getIsFree()) {
continue;
}
glm::vec3 pivot = nextState.getPosition();
glm::vec3 leverArm = endPosition - pivot;
float leverLength = glm::length(leverArm);
if (leverLength < EPSILON) {
continue;
}
glm::quat deltaRotation = rotationBetween(leverArm, targetPosition - pivot);
// We want to mix the shortest rotation with one that will pull the system down with gravity
// so that limbs don't float unrealistically. To do this we compute a simplified center of mass
// where each joint has unit mass and we don't bother averaging it because we only need direction.
if (j > 1) {
glm::vec3 centerOfMass(0.0f);
for (int k = 0; k < j; ++k) {
int massIndex = freeLineage.at(k);
centerOfMass += _jointStates[massIndex].getPosition() - pivot;
}
// the gravitational effect is a rotation that tends to align the two cross products
const glm::vec3 worldAlignment = glm::vec3(0.0f, -1.0f, 0.0f);
glm::quat gravityDelta = rotationBetween(glm::cross(centerOfMass, leverArm),
glm::cross(worldAlignment, leverArm));
float gravityAngle = glm::angle(gravityDelta);
const float MIN_GRAVITY_ANGLE = 0.1f;
float mixFactor = 0.1f;
if (gravityAngle < MIN_GRAVITY_ANGLE) {
// the final rotation is a mix of the two
mixFactor = 0.5f * gravityAngle / MIN_GRAVITY_ANGLE;
}
deltaRotation = safeMix(deltaRotation, gravityDelta, mixFactor);
}
// Apply the rotation delta.
glm::quat oldNextRotation = nextState.getRotation();
float mixFactor = 0.05f;
nextState.applyRotationDelta(deltaRotation, mixFactor, priority);
// measure the result of the rotation which may have been modified by
// blending and constraints
glm::quat actualDelta = nextState.getRotation() * glm::inverse(oldNextRotation);
endPosition = pivot + actualDelta * leverArm;
}
// recompute transforms from the top down
glm::mat4 currentParentTransform = topParentTransform;
for (int j = numFree - 1; j >= 0; --j) {
JointState& freeState = _jointStates[freeLineage.at(j)];
freeState.computeTransform(currentParentTransform);
currentParentTransform = freeState.getTransform();
}
// measure our success
endPosition = endState.getPosition();
distanceToGo = glm::distance(targetPosition, endPosition);
} while (numIterations < MAX_ITERATION_COUNT && distanceToGo > ACCEPTABLE_IK_ERROR);
// set final rotation of the end joint
endState.setRotationInModelFrame(targetRotation, priority, true);
}
bool Rig::restoreJointPosition(int jointIndex, float fraction, float priority, const QVector<int>& freeLineage) {
if (jointIndex == -1 || _jointStates.isEmpty()) {
return false;
}
foreach (int index, freeLineage) {
JointState& state = _jointStates[index];
state.restoreRotation(fraction, priority);
}
return true;
}
float Rig::getLimbLength(int jointIndex, const QVector<int>& freeLineage,
const glm::vec3 scale, const QVector<FBXJoint>& fbxJoints) const {
if (jointIndex == -1 || _jointStates.isEmpty()) {
return 0.0f;
}
float length = 0.0f;
float lengthScale = (scale.x + scale.y + scale.z) / 3.0f;
for (int i = freeLineage.size() - 2; i >= 0; i--) {
length += fbxJoints.at(freeLineage.at(i)).distanceToParent * lengthScale;
}
return length;
}
glm::quat Rig::setJointRotationInBindFrame(int jointIndex, const glm::quat& rotation, float priority, bool constrain) {
glm::quat endRotation;
if (jointIndex == -1 || _jointStates.isEmpty()) {
return endRotation;
}
JointState& state = _jointStates[jointIndex];
state.setRotationInBindFrame(rotation, priority, constrain);
endRotation = state.getRotationInBindFrame();
return endRotation;
}
glm::vec3 Rig::getJointDefaultTranslationInConstrainedFrame(int jointIndex) {
if (jointIndex == -1 || _jointStates.isEmpty()) {
return glm::vec3();
}
return _jointStates[jointIndex].getDefaultTranslationInConstrainedFrame();
}
glm::quat Rig::setJointRotationInConstrainedFrame(int jointIndex, glm::quat targetRotation, float priority, bool constrain, float mix) {
glm::quat endRotation;
if (jointIndex == -1 || _jointStates.isEmpty()) {
return endRotation;
}
JointState& state = _jointStates[jointIndex];
state.setRotationInConstrainedFrame(targetRotation, priority, constrain, mix);
endRotation = state.getRotationInConstrainedFrame();
return endRotation;
}
bool Rig::getJointRotationInConstrainedFrame(int jointIndex, glm::quat& quatOut) const {
if (jointIndex == -1 || _jointStates.isEmpty()) {
return false;
}
quatOut = _jointStates[jointIndex].getRotationInConstrainedFrame();
return true;
}
void Rig::updateVisibleJointStates() {
for (int i = 0; i < _jointStates.size(); i++) {
_jointStates[i].slaveVisibleTransform();
}
}
void Rig::clearJointStatePriorities() {
for (int i = 0; i < _jointStates.size(); i++) {
_jointStates[i].setAnimationPriority(0.0f);
}
}
void Rig::setJointVisibleTransform(int jointIndex, glm::mat4 newTransform) {
if (jointIndex == -1 || jointIndex >= _jointStates.size()) {
return;
}
_jointStates[jointIndex].setVisibleTransform(newTransform);
}
void Rig::applyJointRotationDelta(int jointIndex, const glm::quat& delta, bool constrain, float priority) {
if (jointIndex == -1 || _jointStates.isEmpty()) {
return;
}
_jointStates[jointIndex].applyRotationDelta(delta, constrain, priority);
}
glm::quat Rig::getJointDefaultRotationInParentFrame(int jointIndex) {
if (jointIndex == -1 || _jointStates.isEmpty()) {
return glm::quat();
}
return _jointStates[jointIndex].getDefaultRotationInParentFrame();
}
void Rig::updateFromHeadParameters(const HeadParameters& params, float dt) {
if (params.enableLean) {
updateLeanJoint(params.leanJointIndex, params.leanSideways, params.leanForward, params.torsoTwist);
} else {
_animVars.unset("lean");
}
updateNeckJoint(params.neckJointIndex, params);
updateEyeJoints(params.leftEyeJointIndex, params.rightEyeJointIndex, params.modelTranslation, params.modelRotation,
params.worldHeadOrientation, params.eyeLookAt, params.eyeSaccade);
if (_enableAnimGraph) {
_animVars.set("isTalking", params.isTalking);
_animVars.set("notIsTalking", !params.isTalking);
}
}
static const glm::vec3 X_AXIS(1.0f, 0.0f, 0.0f);
static const glm::vec3 Y_AXIS(0.0f, 1.0f, 0.0f);
static const glm::vec3 Z_AXIS(0.0f, 0.0f, 1.0f);
void Rig::updateLeanJoint(int index, float leanSideways, float leanForward, float torsoTwist) {
if (index >= 0 && _jointStates[index].getParentIndex() >= 0) {
if (_enableAnimGraph && _animSkeleton) {
glm::quat absRot = (glm::angleAxis(-RADIANS_PER_DEGREE * leanSideways, Z_AXIS) *
glm::angleAxis(-RADIANS_PER_DEGREE * leanForward, X_AXIS) *
glm::angleAxis(RADIANS_PER_DEGREE * torsoTwist, Y_AXIS));
_animVars.set("lean", absRot);
} else if (!_enableAnimGraph) {
auto& parentState = _jointStates[_jointStates[index].getParentIndex()];
// get the rotation axes in joint space and use them to adjust the rotation
glm::quat inverse = glm::inverse(parentState.getRotation() * getJointDefaultRotationInParentFrame(index));
setJointRotationInConstrainedFrame(index,
glm::angleAxis(- RADIANS_PER_DEGREE * leanSideways, inverse * Z_AXIS) *
glm::angleAxis(- RADIANS_PER_DEGREE * leanForward, inverse * X_AXIS) *
glm::angleAxis(RADIANS_PER_DEGREE * torsoTwist, inverse * Y_AXIS) *
getJointState(index).getDefaultRotation(), DEFAULT_PRIORITY);
}
}
}
static AnimPose avatarToBonePose(AnimPose pose, AnimSkeleton::ConstPointer skeleton) {
AnimPose rootPose = skeleton->getAbsoluteBindPose(skeleton->nameToJointIndex("Hips"));
AnimPose rotY180(glm::vec3(1), glm::angleAxis((float)PI, glm::vec3(0.0f, 1.0f, 0.0f)), glm::vec3(0));
return rootPose * rotY180 * pose;
}
#ifdef DEBUG_RENDERING
static AnimPose boneToAvatarPose(AnimPose pose, AnimSkeleton::ConstPointer skeleton) {
AnimPose rootPose = skeleton->getAbsoluteBindPose(skeleton->nameToJointIndex("Hips"));
AnimPose rotY180(glm::vec3(1), glm::angleAxis((float)PI, glm::vec3(0.0f, 1.0f, 0.0f)), glm::vec3(0));
return (rootPose * rotY180).inverse() * pose;
}
#endif
static void computeHeadNeckAnimVars(AnimSkeleton::ConstPointer skeleton, const AnimPose& avatarHMDPose,
glm::vec3& headPositionOut, glm::quat& headOrientationOut,
glm::vec3& neckPositionOut, glm::quat& neckOrientationOut) {
// the input hmd values are in avatar space
// we need to transform them into bone space.
AnimPose hmdPose = avatarToBonePose(avatarHMDPose, skeleton);
const glm::vec3 hmdPosition = hmdPose.trans;
const glm::quat rotY180 = glm::angleAxis((float)PI, glm::vec3(0.0f, 1.0f, 0.0f));
const glm::quat hmdOrientation = hmdPose.rot * rotY180; // rotY180 will make z forward not -z
// TODO: cache jointIndices
int rightEyeIndex = skeleton->nameToJointIndex("RightEye");
int leftEyeIndex = skeleton->nameToJointIndex("LeftEye");
int headIndex = skeleton->nameToJointIndex("Head");
int neckIndex = skeleton->nameToJointIndex("Neck");
const glm::vec3 DEFAULT_RIGHT_EYE_POS(-0.3f, 1.6f, 0.0f);
const glm::vec3 DEFAULT_LEFT_EYE_POS(0.3f, 1.6f, 0.0f);
const glm::vec3 DEFAULT_HEAD_POS(0.0f, 1.55f, 0.0f);
const glm::vec3 DEFAULT_NECK_POS(0.0f, 1.5f, 0.0f);
// Use absolute bindPose positions just in case the relBindPose have rotations we don't expect.
glm::vec3 absRightEyePos = rightEyeIndex != -1 ? skeleton->getAbsoluteBindPose(rightEyeIndex).trans : DEFAULT_RIGHT_EYE_POS;
glm::vec3 absLeftEyePos = leftEyeIndex != -1 ? skeleton->getAbsoluteBindPose(leftEyeIndex).trans : DEFAULT_LEFT_EYE_POS;
glm::vec3 absHeadPos = headIndex != -1 ? skeleton->getAbsoluteBindPose(headIndex).trans : DEFAULT_HEAD_POS;
glm::vec3 absNeckPos = neckIndex != -1 ? skeleton->getAbsoluteBindPose(neckIndex).trans : DEFAULT_NECK_POS;
glm::vec3 absCenterEyePos = (absRightEyePos + absLeftEyePos) / 2.0f;
glm::vec3 eyeOffset = absCenterEyePos - absHeadPos;
glm::vec3 headOffset = absHeadPos - absNeckPos;
// apply simplistic head/neck model
// head
headPositionOut = hmdPosition - hmdOrientation * eyeOffset;
headOrientationOut = hmdOrientation;
// neck
neckPositionOut = hmdPosition - hmdOrientation * (headOffset + eyeOffset);
// slerp between bind orientation and hmdOrientation
neckOrientationOut = safeMix(hmdOrientation, skeleton->getRelativeBindPose(skeleton->nameToJointIndex("Neck")).rot, 0.5f);
}
void Rig::updateNeckJoint(int index, const HeadParameters& params) {
if (index >= 0 && _jointStates[index].getParentIndex() >= 0) {
if (_enableAnimGraph && _animSkeleton) {
if (params.isInHMD) {
glm::vec3 headPos, neckPos;
glm::quat headRot, neckRot;
AnimPose avatarHMDPose(glm::vec3(1), params.localHeadOrientation, params.localHeadPosition);
computeHeadNeckAnimVars(_animSkeleton, avatarHMDPose, headPos, headRot, neckPos, neckRot);
// debug rendering
#ifdef DEBUG_RENDERING
const glm::vec4 red(1.0f, 0.0f, 0.0f, 1.0f);
const glm::vec4 green(0.0f, 1.0f, 0.0f, 1.0f);
// transform from bone into avatar space
AnimPose headPose(glm::vec3(1), headRot, headPos);
headPose = boneToAvatarPose(headPose, _animSkeleton);
DebugDraw::getInstance().addMyAvatarMarker("headTarget", headPose.rot, headPose.trans, red);
// transform from bone into avatar space
AnimPose neckPose(glm::vec3(1), neckRot, neckPos);
neckPose = boneToAvatarPose(neckPose, _animSkeleton);
DebugDraw::getInstance().addMyAvatarMarker("neckTarget", neckPose.rot, neckPose.trans, green);
#endif
_animVars.set("headPosition", headPos);
_animVars.set("headRotation", headRot);
_animVars.set("headType", QString("RotationAndPosition"));
_animVars.set("neckPosition", neckPos);
_animVars.set("neckRotation", neckRot);
} else {
// the params.localHeadOrientation is composed incorrectly, so re-compose it correctly from pitch, yaw and roll.
glm::quat realLocalHeadOrientation = (glm::angleAxis(glm::radians(-params.localHeadRoll), Z_AXIS) *
glm::angleAxis(glm::radians(params.localHeadYaw), Y_AXIS) *
glm::angleAxis(glm::radians(-params.localHeadPitch), X_AXIS));
_animVars.unset("headPosition");
_animVars.set("headRotation", realLocalHeadOrientation);
_animVars.set("headType", QString("RotationOnly"));
_animVars.unset("neckPosition");
_animVars.unset("neckRotation");
}
} else if (!_enableAnimGraph) {
auto& state = _jointStates[index];
auto& parentState = _jointStates[state.getParentIndex()];
// get the rotation axes in joint space and use them to adjust the rotation
glm::mat3 inverse = glm::mat3(glm::inverse(parentState.getTransform() *
glm::translate(getJointDefaultTranslationInConstrainedFrame(index)) *
state.getPreTransform() * glm::mat4_cast(state.getPreRotation())));
glm::vec3 pitchYawRoll = safeEulerAngles(params.localHeadOrientation);
glm::vec3 lean = glm::radians(glm::vec3(params.leanForward, params.torsoTwist, params.leanSideways));
pitchYawRoll -= lean;
setJointRotationInConstrainedFrame(index,
glm::angleAxis(-pitchYawRoll.z, glm::normalize(inverse * Z_AXIS)) *
glm::angleAxis(pitchYawRoll.y, glm::normalize(inverse * Y_AXIS)) *
glm::angleAxis(-pitchYawRoll.x, glm::normalize(inverse * X_AXIS)) *
state.getDefaultRotation(), DEFAULT_PRIORITY);
}
}
}
void Rig::updateEyeJoints(int leftEyeIndex, int rightEyeIndex, const glm::vec3& modelTranslation, const glm::quat& modelRotation,
const glm::quat& worldHeadOrientation, const glm::vec3& lookAtSpot, const glm::vec3& saccade) {
updateEyeJoint(leftEyeIndex, modelTranslation, modelRotation, worldHeadOrientation, lookAtSpot, saccade);
updateEyeJoint(rightEyeIndex, modelTranslation, modelRotation, worldHeadOrientation, lookAtSpot, saccade);
}
void Rig::updateEyeJoint(int index, const glm::vec3& modelTranslation, const glm::quat& modelRotation, const glm::quat& worldHeadOrientation, const glm::vec3& lookAtSpot, const glm::vec3& saccade) {
if (index >= 0 && _jointStates[index].getParentIndex() >= 0) {
auto& state = _jointStates[index];
auto& parentState = _jointStates[state.getParentIndex()];
// NOTE: at the moment we do the math in the world-frame, hence the inverse transform is more complex than usual.
glm::mat4 inverse = glm::inverse(glm::mat4_cast(modelRotation) * parentState.getTransform() *
glm::translate(state.getDefaultTranslationInConstrainedFrame()) *
state.getPreTransform() * glm::mat4_cast(state.getPreRotation() * state.getDefaultRotation()));
glm::vec3 front = glm::vec3(inverse * glm::vec4(worldHeadOrientation * IDENTITY_FRONT, 0.0f));
glm::vec3 lookAtDelta = lookAtSpot - modelTranslation;
glm::vec3 lookAt = glm::vec3(inverse * glm::vec4(lookAtDelta + glm::length(lookAtDelta) * saccade, 1.0f));
glm::quat between = rotationBetween(front, lookAt);
const float MAX_ANGLE = 30.0f * RADIANS_PER_DEGREE;
state.setRotationInConstrainedFrame(glm::angleAxis(glm::clamp(glm::angle(between), -MAX_ANGLE, MAX_ANGLE), glm::axis(between)) *
state.getDefaultRotation(), DEFAULT_PRIORITY);
}
}
void Rig::updateFromHandParameters(const HandParameters& params, float dt) {
if (_enableAnimGraph && _animSkeleton && _animNode) {
// TODO: figure out how to obtain the yFlip from where it is actually stored
glm::quat yFlipHACK = glm::angleAxis(PI, glm::vec3(0.0f, 1.0f, 0.0f));
int leftHandIndex = _animSkeleton->nameToJointIndex("LeftHand");
AnimPose rootPose = _animNode->getRootPose(leftHandIndex);
if (params.isLeftEnabled) {
_animVars.set("leftHandPosition", rootPose.trans + rootPose.rot * yFlipHACK * params.leftPosition);
_animVars.set("leftHandRotation", rootPose.rot * yFlipHACK * params.leftOrientation);
} else {
_animVars.unset("leftHandPosition");
_animVars.unset("leftHandRotation");
}
if (params.isRightEnabled) {
_animVars.set("rightHandPosition", rootPose.trans + rootPose.rot * yFlipHACK * params.rightPosition);
_animVars.set("rightHandRotation", rootPose.rot * yFlipHACK * params.rightOrientation);
} else {
_animVars.unset("rightHandPosition");
_animVars.unset("rightHandRotation");
}
// set leftHand grab vars
_animVars.set("isLeftHandIdle", false);
_animVars.set("isLeftHandPoint", false);
_animVars.set("isLeftHandGrab", false);
// Split the trigger range into three zones.
bool rampOut = false;
if (params.leftTrigger > 0.6666f) {
_animVars.set("isLeftHandGrab", true);
} else if (params.leftTrigger > 0.3333f) {
_animVars.set("isLeftHandPoint", true);
} else {
_animVars.set("isLeftHandIdle", true);
rampOut = true;
}
const float OVERLAY_RAMP_OUT_SPEED = 6.0f; // ramp in and out over 1/6th of a sec
_leftHandOverlayAlpha = glm::clamp(_leftHandOverlayAlpha + (rampOut ? -1.0f : 1.0f) * OVERLAY_RAMP_OUT_SPEED * dt, 0.0f, 1.0f);
_animVars.set("leftHandOverlayAlpha", _leftHandOverlayAlpha);
_animVars.set("leftHandGrabBlend", params.leftTrigger);
// set leftHand grab vars
_animVars.set("isRightHandIdle", false);
_animVars.set("isRightHandPoint", false);
_animVars.set("isRightHandGrab", false);
// Split the trigger range into three zones
rampOut = false;
if (params.rightTrigger > 0.6666f) {
_animVars.set("isRightHandGrab", true);
} else if (params.rightTrigger > 0.3333f) {
_animVars.set("isRightHandPoint", true);
} else {
_animVars.set("isRightHandIdle", true);
rampOut = true;
}
_rightHandOverlayAlpha = glm::clamp(_rightHandOverlayAlpha + (rampOut ? -1.0f : 1.0f) * OVERLAY_RAMP_OUT_SPEED * dt, 0.0f, 1.0f);
_animVars.set("rightHandOverlayAlpha", _rightHandOverlayAlpha);
_animVars.set("rightHandGrabBlend", params.rightTrigger);
}
}
void Rig::initAnimGraph(const QUrl& url, const FBXGeometry& fbxGeometry) {
if (!_enableAnimGraph) {
return;
}
_animSkeleton = std::make_shared<AnimSkeleton>(fbxGeometry);
// load the anim graph
_animLoader.reset(new AnimNodeLoader(url));
connect(_animLoader.get(), &AnimNodeLoader::success, [this](AnimNode::Pointer nodeIn) {
_animNode = nodeIn;
_animNode->setSkeleton(_animSkeleton);
});
connect(_animLoader.get(), &AnimNodeLoader::error, [url](int error, QString str) {
qCCritical(animation) << "Error loading" << url.toDisplayString() << "code = " << error << "str =" << str;
});
}