overte/interface/src/Audio.cpp
2013-07-16 11:16:51 -07:00

767 lines
32 KiB
C++

//
// Audio.cpp
// interface
//
// Created by Stephen Birarda on 1/22/13.
// Copyright (c) 2013 High Fidelity, Inc. All rights reserved.
//
#ifndef _WIN32
#include <cstring>
#include <fstream>
#include <iostream>
#include <pthread.h>
#include <sys/stat.h>
#include <AngleUtil.h>
#include <NodeList.h>
#include <NodeTypes.h>
#include <PacketHeaders.h>
#include <SharedUtil.h>
#include <StdDev.h>
#include <UDPSocket.h>
#include "Application.h"
#include "Audio.h"
#include "Util.h"
// Uncomment the following definition to test audio device latency by copying output to input
//#define TEST_AUDIO_LOOPBACK
//#define SHOW_AUDIO_DEBUG
#define VISUALIZE_ECHO_CANCELLATION
static const int PHASE_DELAY_AT_90 = 20;
static const float AMPLITUDE_RATIO_AT_90 = 0.5;
static const int MIN_FLANGE_EFFECT_THRESHOLD = 600;
static const int MAX_FLANGE_EFFECT_THRESHOLD = 1500;
static const float FLANGE_BASE_RATE = 4;
static const float MAX_FLANGE_SAMPLE_WEIGHT = 0.50;
static const float MIN_FLANGE_INTENSITY = 0.25;
static const float JITTER_BUFFER_LENGTH_MSECS = 12;
static const short JITTER_BUFFER_SAMPLES = JITTER_BUFFER_LENGTH_MSECS *
NUM_AUDIO_CHANNELS * (SAMPLE_RATE / 1000.0);
static const float AUDIO_CALLBACK_MSECS = (float)BUFFER_LENGTH_SAMPLES_PER_CHANNEL / (float)SAMPLE_RATE * 1000.0;
static const int NODE_LOOPBACK_MODIFIER = 307;
// Speex preprocessor and echo canceller adaption
static const int AEC_N_CHANNELS_MIC = 1; // Number of microphone channels
static const int AEC_N_CHANNELS_PLAY = 2; // Number of speaker channels
static const int AEC_FILTER_LENGTH = BUFFER_LENGTH_SAMPLES_PER_CHANNEL * 20; // Width of the filter
static const int AEC_BUFFERED_FRAMES = 6; // Maximum number of frames to buffer
static const int AEC_BUFFERED_SAMPLES_PER_CHANNEL = BUFFER_LENGTH_SAMPLES_PER_CHANNEL * AEC_BUFFERED_FRAMES;
static const int AEC_BUFFERED_SAMPLES = AEC_BUFFERED_SAMPLES_PER_CHANNEL * AEC_N_CHANNELS_PLAY;
static const int AEC_TMP_BUFFER_SIZE = (AEC_N_CHANNELS_MIC + // Temporary space for processing a
AEC_N_CHANNELS_PLAY) * BUFFER_LENGTH_SAMPLES_PER_CHANNEL; // single frame
// Ping test configuration
static const float PING_PITCH = 16.f; // Ping wavelength, # samples / radian
static const float PING_VOLUME = 32000.f; // Ping peak amplitude
static const int PING_MIN_AMPLI = 225; // Minimum amplitude
static const int PING_MAX_PERIOD_DIFFERENCE = 15; // Maximum # samples from expected period
static const int PING_PERIOD = int(Radians::twicePi() * PING_PITCH); // Sine period based on the given pitch
static const int PING_HALF_PERIOD = int(Radians::pi() * PING_PITCH); // Distance between extrema
static const int PING_FRAMES_TO_RECORD = AEC_BUFFERED_FRAMES; // Frames to record for analysis
static const int PING_SAMPLES_TO_ANALYZE = AEC_BUFFERED_SAMPLES_PER_CHANNEL; // Samples to analyze (reusing AEC buffer)
static const int PING_BUFFER_OFFSET = BUFFER_LENGTH_SAMPLES_PER_CHANNEL - PING_PERIOD * 2.0f; // Signal start
inline void Audio::performIO(int16_t* inputLeft, int16_t* outputLeft, int16_t* outputRight) {
NodeList* nodeList = NodeList::getInstance();
Application* interface = Application::getInstance();
Avatar* interfaceAvatar = interface->getAvatar();
// Add Procedural effects to input samples
addProceduralSounds(inputLeft, BUFFER_LENGTH_SAMPLES_PER_CHANNEL);
if (nodeList && inputLeft) {
// Measure the loudness of the signal from the microphone and store in audio object
float loudness = 0;
for (int i = 0; i < BUFFER_LENGTH_SAMPLES_PER_CHANNEL; i++) {
loudness += abs(inputLeft[i]);
}
loudness /= BUFFER_LENGTH_SAMPLES_PER_CHANNEL;
_lastInputLoudness = loudness;
// add input (@microphone) data to the scope
_scope->addSamples(0, inputLeft, BUFFER_LENGTH_SAMPLES_PER_CHANNEL);
Node* audioMixer = nodeList->soloNodeOfType(NODE_TYPE_AUDIO_MIXER);
if (audioMixer) {
audioMixer->lock();
sockaddr_in audioSocket = *(sockaddr_in*) audioMixer->getActiveSocket();
audioMixer->unlock();
glm::vec3 headPosition = interfaceAvatar->getHeadJointPosition();
glm::quat headOrientation = interfaceAvatar->getHead().getOrientation();
int numBytesPacketHeader = numBytesForPacketHeader((unsigned char*) &PACKET_TYPE_MICROPHONE_AUDIO_NO_ECHO);
int leadingBytes = numBytesPacketHeader + sizeof(headPosition) + sizeof(headOrientation);
// we need the amount of bytes in the buffer + 1 for type
// + 12 for 3 floats for position + float for bearing + 1 attenuation byte
unsigned char dataPacket[BUFFER_LENGTH_BYTES_PER_CHANNEL + leadingBytes];
PACKET_TYPE packetType = (Application::getInstance()->shouldEchoAudio())
? PACKET_TYPE_MICROPHONE_AUDIO_WITH_ECHO
: PACKET_TYPE_MICROPHONE_AUDIO_NO_ECHO;
unsigned char* currentPacketPtr = dataPacket + populateTypeAndVersion(dataPacket, packetType);
// memcpy the three float positions
memcpy(currentPacketPtr, &headPosition, sizeof(headPosition));
currentPacketPtr += (sizeof(headPosition));
// memcpy our orientation
memcpy(currentPacketPtr, &headOrientation, sizeof(headOrientation));
currentPacketPtr += sizeof(headOrientation);
// copy the audio data to the last BUFFER_LENGTH_BYTES bytes of the data packet
memcpy(currentPacketPtr, inputLeft, BUFFER_LENGTH_BYTES_PER_CHANNEL);
nodeList->getNodeSocket()->send((sockaddr*) &audioSocket,
dataPacket,
BUFFER_LENGTH_BYTES_PER_CHANNEL + leadingBytes);
interface->getBandwidthMeter()->outputStream(BandwidthMeter::AUDIO).updateValue(BUFFER_LENGTH_BYTES_PER_CHANNEL
+ leadingBytes);
}
}
memset(outputLeft, 0, PACKET_LENGTH_BYTES_PER_CHANNEL);
memset(outputRight, 0, PACKET_LENGTH_BYTES_PER_CHANNEL);
AudioRingBuffer* ringBuffer = &_ringBuffer;
// if there is anything in the ring buffer, decide what to do:
if (ringBuffer->getEndOfLastWrite()) {
if (!ringBuffer->isStarted() && ringBuffer->diffLastWriteNextOutput() <
(PACKET_LENGTH_SAMPLES + _jitterBufferSamples * (ringBuffer->isStereo() ? 2 : 1))) {
//
// If not enough audio has arrived to start playback, keep waiting
//
#ifdef SHOW_AUDIO_DEBUG
qDebug("%i,%i,%i,%i",
_packetsReceivedThisPlayback,
ringBuffer->diffLastWriteNextOutput(),
PACKET_LENGTH_SAMPLES,
_jitterBufferSamples);
#endif
} else if (ringBuffer->isStarted() && ringBuffer->diffLastWriteNextOutput() == 0) {
//
// If we have started and now have run out of audio to send to the audio device,
// this means we've starved and should restart.
//
ringBuffer->setStarted(false);
_numStarves++;
_packetsReceivedThisPlayback = 0;
_wasStarved = 10; // Frames for which to render the indication that the system was starved.
#ifdef SHOW_AUDIO_DEBUG
qDebug("Starved, remaining samples = %d",
ringBuffer->diffLastWriteNextOutput());
#endif
} else {
//
// We are either already playing back, or we have enough audio to start playing back.
//
if (!ringBuffer->isStarted()) {
ringBuffer->setStarted(true);
#ifdef SHOW_AUDIO_DEBUG
qDebug("starting playback %0.1f msecs delayed, jitter = %d, pkts recvd: %d",
(usecTimestampNow() - usecTimestamp(&_firstPacketReceivedTime))/1000.0,
_jitterBufferSamples,
_packetsReceivedThisPlayback);
#endif
}
//
// play whatever we have in the audio buffer
//
// if we haven't fired off the flange effect, check if we should
// TODO: lastMeasuredHeadYaw is now relative to body - check if this still works.
int lastYawMeasured = fabsf(interfaceAvatar->getHeadYawRate());
if (!_samplesLeftForFlange && lastYawMeasured > MIN_FLANGE_EFFECT_THRESHOLD) {
// we should flange for one second
if ((_lastYawMeasuredMaximum = std::max(_lastYawMeasuredMaximum, lastYawMeasured)) != lastYawMeasured) {
_lastYawMeasuredMaximum = std::min(_lastYawMeasuredMaximum, MIN_FLANGE_EFFECT_THRESHOLD);
_samplesLeftForFlange = SAMPLE_RATE;
_flangeIntensity = MIN_FLANGE_INTENSITY +
((_lastYawMeasuredMaximum - MIN_FLANGE_EFFECT_THRESHOLD) /
(float)(MAX_FLANGE_EFFECT_THRESHOLD - MIN_FLANGE_EFFECT_THRESHOLD)) *
(1 - MIN_FLANGE_INTENSITY);
_flangeRate = FLANGE_BASE_RATE * _flangeIntensity;
_flangeWeight = MAX_FLANGE_SAMPLE_WEIGHT * _flangeIntensity;
}
}
for (int s = 0; s < PACKET_LENGTH_SAMPLES_PER_CHANNEL; s++) {
int leftSample = ringBuffer->getNextOutput()[s];
int rightSample = ringBuffer->getNextOutput()[s + PACKET_LENGTH_SAMPLES_PER_CHANNEL];
if (_samplesLeftForFlange > 0) {
float exponent = (SAMPLE_RATE - _samplesLeftForFlange - (SAMPLE_RATE / _flangeRate)) /
(SAMPLE_RATE / _flangeRate);
int sampleFlangeDelay = (SAMPLE_RATE / (1000 * _flangeIntensity)) * powf(2, exponent);
if (_samplesLeftForFlange != SAMPLE_RATE || s >= (SAMPLE_RATE / 2000)) {
// we have a delayed sample to add to this sample
int16_t *flangeFrame = ringBuffer->getNextOutput();
int flangeIndex = s - sampleFlangeDelay;
if (flangeIndex < 0) {
// we need to grab the flange sample from earlier in the buffer
flangeFrame = ringBuffer->getNextOutput() != ringBuffer->getBuffer()
? ringBuffer->getNextOutput() - PACKET_LENGTH_SAMPLES
: ringBuffer->getNextOutput() + RING_BUFFER_LENGTH_SAMPLES - PACKET_LENGTH_SAMPLES;
flangeIndex = PACKET_LENGTH_SAMPLES_PER_CHANNEL + (s - sampleFlangeDelay);
}
int16_t leftFlangeSample = flangeFrame[flangeIndex];
int16_t rightFlangeSample = flangeFrame[flangeIndex + PACKET_LENGTH_SAMPLES_PER_CHANNEL];
leftSample = (1 - _flangeWeight) * leftSample + (_flangeWeight * leftFlangeSample);
rightSample = (1 - _flangeWeight) * rightSample + (_flangeWeight * rightFlangeSample);
_samplesLeftForFlange--;
if (_samplesLeftForFlange == 0) {
_lastYawMeasuredMaximum = 0;
}
}
}
#ifndef TEST_AUDIO_LOOPBACK
outputLeft[s] = leftSample;
outputRight[s] = rightSample;
#else
outputLeft[s] = inputLeft[s];
outputRight[s] = inputLeft[s];
#endif
}
ringBuffer->setNextOutput(ringBuffer->getNextOutput() + PACKET_LENGTH_SAMPLES);
if (ringBuffer->getNextOutput() == ringBuffer->getBuffer() + RING_BUFFER_LENGTH_SAMPLES) {
ringBuffer->setNextOutput(ringBuffer->getBuffer());
}
}
}
eventuallySendRecvPing(inputLeft, outputLeft, outputRight);
// add output (@speakers) data just written to the scope
_scope->addSamples(1, outputLeft, BUFFER_LENGTH_SAMPLES_PER_CHANNEL);
_scope->addSamples(2, outputRight, BUFFER_LENGTH_SAMPLES_PER_CHANNEL);
gettimeofday(&_lastCallbackTime, NULL);
}
// inputBuffer A pointer to an internal portaudio data buffer containing data read by portaudio.
// outputBuffer A pointer to an internal portaudio data buffer to be read by the configured output device.
// frames Number of frames that portaudio requests to be read/written.
// timeInfo Portaudio time info. Currently unused.
// statusFlags Portaudio status flags. Currently unused.
// userData Pointer to supplied user data (in this case, a pointer to the parent Audio object
int Audio::audioCallback (const void* inputBuffer,
void* outputBuffer,
unsigned long frames,
const PaStreamCallbackTimeInfo *timeInfo,
PaStreamCallbackFlags statusFlags,
void* userData) {
int16_t* inputLeft = static_cast<int16_t*const*>(inputBuffer)[0];
int16_t* outputLeft = static_cast<int16_t**>(outputBuffer)[0];
int16_t* outputRight = static_cast<int16_t**>(outputBuffer)[1];
static_cast<Audio*>(userData)->performIO(inputLeft, outputLeft, outputRight);
return paContinue;
}
static void outputPortAudioError(PaError error) {
if (error != paNoError) {
qDebug("-- portaudio termination error --");
qDebug("PortAudio error (%d): %s", error, Pa_GetErrorText(error));
}
}
void Audio::reset() {
_packetsReceivedThisPlayback = 0;
_ringBuffer.reset();
}
Audio::Audio(Oscilloscope* scope, int16_t initialJitterBufferSamples) :
_stream(NULL),
_ringBuffer(true),
_scope(scope),
_averagedLatency(0.0),
_measuredJitter(0),
_jitterBufferSamples(initialJitterBufferSamples),
_wasStarved(0),
_numStarves(0),
_lastInputLoudness(0),
_lastVelocity(0),
_lastAcceleration(0),
_totalPacketsReceived(0),
_firstPacketReceivedTime(),
_packetsReceivedThisPlayback(0),
_echoSamplesLeft(NULL),
_isSendingEchoPing(false),
_pingAnalysisPending(false),
_pingFramesToRecord(0),
_samplesLeftForFlange(0),
_lastYawMeasuredMaximum(0),
_flangeIntensity(0.0f),
_flangeRate(0.0f),
_flangeWeight(0.0f)
{
outputPortAudioError(Pa_Initialize());
// NOTE: Portaudio documentation is unclear as to whether it is safe to specify the
// number of frames per buffer explicitly versus setting this value to zero.
// Possible source of latency that we need to investigate further.
//
unsigned long FRAMES_PER_BUFFER = BUFFER_LENGTH_SAMPLES_PER_CHANNEL;
// Manually initialize the portaudio stream to ask for minimum latency
PaStreamParameters inputParameters, outputParameters;
inputParameters.device = Pa_GetDefaultInputDevice();
outputParameters.device = Pa_GetDefaultOutputDevice();
if (inputParameters.device == -1 || outputParameters.device == -1) {
qDebug("Audio: Missing device.");
outputPortAudioError(Pa_Terminate());
return;
}
inputParameters.channelCount = 2; // Stereo input
inputParameters.sampleFormat = (paInt16 | paNonInterleaved);
inputParameters.suggestedLatency = Pa_GetDeviceInfo(inputParameters.device)->defaultLowInputLatency;
inputParameters.hostApiSpecificStreamInfo = NULL;
outputParameters.channelCount = 2; // Stereo output
outputParameters.sampleFormat = (paInt16 | paNonInterleaved);
outputParameters.suggestedLatency = Pa_GetDeviceInfo(outputParameters.device)->defaultLowOutputLatency;
outputParameters.hostApiSpecificStreamInfo = NULL;
outputPortAudioError(Pa_OpenStream(&_stream,
&inputParameters,
&outputParameters,
SAMPLE_RATE,
FRAMES_PER_BUFFER,
paNoFlag,
audioCallback,
(void*) this));
if (! _stream) {
return;
}
_echoSamplesLeft = new int16_t[AEC_BUFFERED_SAMPLES + AEC_TMP_BUFFER_SIZE];
memset(_echoSamplesLeft, 0, AEC_BUFFERED_SAMPLES * sizeof(int16_t));
// start the stream now that sources are good to go
outputPortAudioError(Pa_StartStream(_stream));
// Uncomment these lines to see the system-reported latency
//qDebug("Default low input, output latency (secs): %0.4f, %0.4f",
// Pa_GetDeviceInfo(Pa_GetDefaultInputDevice())->defaultLowInputLatency,
// Pa_GetDeviceInfo(Pa_GetDefaultOutputDevice())->defaultLowOutputLatency);
const PaStreamInfo* streamInfo = Pa_GetStreamInfo(_stream);
qDebug("Started audio with reported latency msecs In/Out: %.0f, %.0f", streamInfo->inputLatency * 1000.f,
streamInfo->outputLatency * 1000.f);
gettimeofday(&_lastReceiveTime, NULL);
}
Audio::~Audio() {
if (_stream) {
outputPortAudioError(Pa_CloseStream(_stream));
outputPortAudioError(Pa_Terminate());
}
delete[] _echoSamplesLeft;
}
void Audio::addReceivedAudioToBuffer(unsigned char* receivedData, int receivedBytes) {
const int NUM_INITIAL_PACKETS_DISCARD = 3;
const int STANDARD_DEVIATION_SAMPLE_COUNT = 500;
timeval currentReceiveTime;
gettimeofday(&currentReceiveTime, NULL);
_totalPacketsReceived++;
double timeDiff = diffclock(&_lastReceiveTime, &currentReceiveTime);
// Discard first few received packets for computing jitter (often they pile up on start)
if (_totalPacketsReceived > NUM_INITIAL_PACKETS_DISCARD) {
_stdev.addValue(timeDiff);
}
if (_stdev.getSamples() > STANDARD_DEVIATION_SAMPLE_COUNT) {
_measuredJitter = _stdev.getStDev();
_stdev.reset();
// Set jitter buffer to be a multiple of the measured standard deviation
const int MAX_JITTER_BUFFER_SAMPLES = RING_BUFFER_LENGTH_SAMPLES / 2;
const float NUM_STANDARD_DEVIATIONS = 3.f;
if (Application::getInstance()->shouldDynamicallySetJitterBuffer()) {
float newJitterBufferSamples = (NUM_STANDARD_DEVIATIONS * _measuredJitter)
/ 1000.f
* SAMPLE_RATE;
setJitterBufferSamples(glm::clamp((int)newJitterBufferSamples, 0, MAX_JITTER_BUFFER_SAMPLES));
}
}
if (!_ringBuffer.isStarted()) {
_packetsReceivedThisPlayback++;
}
if (_packetsReceivedThisPlayback == 1) {
gettimeofday(&_firstPacketReceivedTime, NULL);
}
if (_ringBuffer.diffLastWriteNextOutput() + PACKET_LENGTH_SAMPLES >
PACKET_LENGTH_SAMPLES + (ceilf((float) (_jitterBufferSamples * 2) / PACKET_LENGTH_SAMPLES) * PACKET_LENGTH_SAMPLES)) {
// this packet would give us more than the required amount for play out
// discard the first packet in the buffer
_ringBuffer.setNextOutput(_ringBuffer.getNextOutput() + PACKET_LENGTH_SAMPLES);
if (_ringBuffer.getNextOutput() == _ringBuffer.getBuffer() + RING_BUFFER_LENGTH_SAMPLES) {
_ringBuffer.setNextOutput(_ringBuffer.getBuffer());
}
}
//printf("Got audio packet %d\n", _packetsReceivedThisPlayback);
_ringBuffer.parseData((unsigned char*) receivedData, receivedBytes);
Application::getInstance()->getBandwidthMeter()->inputStream(BandwidthMeter::AUDIO)
.updateValue(PACKET_LENGTH_BYTES + sizeof(PACKET_TYPE));
_lastReceiveTime = currentReceiveTime;
}
void Audio::render(int screenWidth, int screenHeight) {
if (_stream) {
glLineWidth(2.0);
glBegin(GL_LINES);
glColor3f(1,1,1);
int startX = 20.0;
int currentX = startX;
int topY = screenHeight - 40;
int bottomY = screenHeight - 20;
float frameWidth = 20.0;
float halfY = topY + ((bottomY - topY) / 2.0);
// draw the lines for the base of the ring buffer
glVertex2f(currentX, topY);
glVertex2f(currentX, bottomY);
for (int i = 0; i < RING_BUFFER_LENGTH_FRAMES / 2; i++) {
glVertex2f(currentX, halfY);
glVertex2f(currentX + frameWidth, halfY);
currentX += frameWidth;
glVertex2f(currentX, topY);
glVertex2f(currentX, bottomY);
}
glEnd();
// Show a bar with the amount of audio remaining in ring buffer beyond current playback
float remainingBuffer = 0;
timeval currentTime;
gettimeofday(&currentTime, NULL);
float timeLeftInCurrentBuffer = 0;
if (_lastCallbackTime.tv_usec > 0) {
timeLeftInCurrentBuffer = AUDIO_CALLBACK_MSECS - diffclock(&_lastCallbackTime, &currentTime);
}
if (_ringBuffer.getEndOfLastWrite() != NULL)
remainingBuffer = _ringBuffer.diffLastWriteNextOutput() / PACKET_LENGTH_SAMPLES * AUDIO_CALLBACK_MSECS;
if (_wasStarved == 0) {
glColor3f(0, 1, 0);
} else {
glColor3f(0.5 + (_wasStarved / 20.0f), 0, 0);
_wasStarved--;
}
glBegin(GL_QUADS);
glVertex2f(startX, topY + 2);
glVertex2f(startX + (remainingBuffer + timeLeftInCurrentBuffer)/AUDIO_CALLBACK_MSECS*frameWidth, topY + 2);
glVertex2f(startX + (remainingBuffer + timeLeftInCurrentBuffer)/AUDIO_CALLBACK_MSECS*frameWidth, bottomY - 2);
glVertex2f(startX, bottomY - 2);
glEnd();
if (_averagedLatency == 0.0) {
_averagedLatency = remainingBuffer + timeLeftInCurrentBuffer;
} else {
_averagedLatency = 0.99f * _averagedLatency + 0.01f * (remainingBuffer + timeLeftInCurrentBuffer);
}
// Show a yellow bar with the averaged msecs latency you are hearing (from time of packet receipt)
glColor3f(1,1,0);
glBegin(GL_QUADS);
glVertex2f(startX + _averagedLatency / AUDIO_CALLBACK_MSECS * frameWidth - 2, topY - 2);
glVertex2f(startX + _averagedLatency / AUDIO_CALLBACK_MSECS * frameWidth + 2, topY - 2);
glVertex2f(startX + _averagedLatency / AUDIO_CALLBACK_MSECS * frameWidth + 2, bottomY + 2);
glVertex2f(startX + _averagedLatency / AUDIO_CALLBACK_MSECS * frameWidth - 2, bottomY + 2);
glEnd();
char out[40];
sprintf(out, "%3.0f\n", _averagedLatency);
drawtext(startX + _averagedLatency / AUDIO_CALLBACK_MSECS * frameWidth - 10, topY - 9, 0.10, 0, 1, 0, out, 1,1,0);
// Show a red bar with the 'start' point of one frame plus the jitter buffer
glColor3f(1, 0, 0);
int jitterBufferPels = (1.f + (float)getJitterBufferSamples() / (float)PACKET_LENGTH_SAMPLES_PER_CHANNEL) * frameWidth;
sprintf(out, "%.0f\n", getJitterBufferSamples() / SAMPLE_RATE * 1000.f);
drawtext(startX + jitterBufferPels - 5, topY - 9, 0.10, 0, 1, 0, out, 1, 0, 0);
sprintf(out, "j %.1f\n", _measuredJitter);
if (Application::getInstance()->shouldDynamicallySetJitterBuffer()) {
drawtext(startX + jitterBufferPels - 5, bottomY + 12, 0.10, 0, 1, 0, out, 1, 0, 0);
} else {
drawtext(startX, bottomY + 12, 0.10, 0, 1, 0, out, 1, 0, 0);
}
glBegin(GL_QUADS);
glVertex2f(startX + jitterBufferPels - 2, topY - 2);
glVertex2f(startX + jitterBufferPels + 2, topY - 2);
glVertex2f(startX + jitterBufferPels + 2, bottomY + 2);
glVertex2f(startX + jitterBufferPels - 2, bottomY + 2);
glEnd();
}
}
//
// Very Simple LowPass filter which works by averaging a bunch of samples with a moving window
//
//#define lowpass 1
void Audio::lowPassFilter(int16_t* inputBuffer) {
static int16_t outputBuffer[BUFFER_LENGTH_SAMPLES_PER_CHANNEL];
for (int i = 2; i < BUFFER_LENGTH_SAMPLES_PER_CHANNEL - 2; i++) {
#ifdef lowpass
outputBuffer[i] = (int16_t)(0.125f * (float)inputBuffer[i - 2] +
0.25f * (float)inputBuffer[i - 1] +
0.25f * (float)inputBuffer[i] +
0.25f * (float)inputBuffer[i + 1] +
0.125f * (float)inputBuffer[i + 2] );
#else
outputBuffer[i] = (int16_t)(0.125f * -(float)inputBuffer[i - 2] +
0.25f * -(float)inputBuffer[i - 1] +
1.75f * (float)inputBuffer[i] +
0.25f * -(float)inputBuffer[i + 1] +
0.125f * -(float)inputBuffer[i + 2] );
#endif
}
outputBuffer[0] = inputBuffer[0];
outputBuffer[1] = inputBuffer[1];
outputBuffer[BUFFER_LENGTH_SAMPLES_PER_CHANNEL - 2] = inputBuffer[BUFFER_LENGTH_SAMPLES_PER_CHANNEL - 2];
outputBuffer[BUFFER_LENGTH_SAMPLES_PER_CHANNEL - 1] = inputBuffer[BUFFER_LENGTH_SAMPLES_PER_CHANNEL - 1];
memcpy(inputBuffer, outputBuffer, BUFFER_LENGTH_SAMPLES_PER_CHANNEL * sizeof(int16_t));
}
// Take a pointer to the acquired microphone input samples and add procedural sounds
void Audio::addProceduralSounds(int16_t* inputBuffer, int numSamples) {
const float MAX_AUDIBLE_VELOCITY = 6.0;
const float MIN_AUDIBLE_VELOCITY = 0.1;
const int VOLUME_BASELINE = 400;
const float SOUND_PITCH = 8.f;
float speed = glm::length(_lastVelocity);
float volume = VOLUME_BASELINE * (1.f - speed / MAX_AUDIBLE_VELOCITY);
// Add a noise-modulated sinewave with volume that tapers off with speed increasing
if ((speed > MIN_AUDIBLE_VELOCITY) && (speed < MAX_AUDIBLE_VELOCITY)) {
for (int i = 0; i < numSamples; i++) {
inputBuffer[i] += (int16_t)((sinf((float) i / SOUND_PITCH * speed) * randFloat()) * volume * speed);
}
}
}
// -----------------------------------------------------------
// Accoustic ping (audio system round trip time determination)
// -----------------------------------------------------------
void Audio::ping() {
_pingFramesToRecord = PING_FRAMES_TO_RECORD;
_isSendingEchoPing = true;
_scope->setDownsampleRatio(8);
_scope->inputPaused = false;
}
inline void Audio::eventuallySendRecvPing(int16_t* inputLeft, int16_t* outputLeft, int16_t* outputRight) {
if (_isSendingEchoPing) {
// Overwrite output with ping signal.
//
// Using a signed variant of sinc because it's speaker-reproducible
// with a unique, characteristic point in time (its center), aligned
// to the right of the output buffer.
//
// |
// | |
// ...--- t --------+-+-+-+-+------->
// | | :
// | :
// buffer :<- start of next buffer
// : : :
// :---: sine period
// :-: half sine period
//
memset(outputLeft, 0, PING_BUFFER_OFFSET * sizeof(int16_t));
outputLeft += PING_BUFFER_OFFSET;
memset(outputRight, 0, PING_BUFFER_OFFSET * sizeof(int16_t));
outputRight += PING_BUFFER_OFFSET;
for (int s = -PING_PERIOD; s < PING_PERIOD; ++s) {
float t = float(s) / PING_PITCH;
*outputLeft++ = *outputRight++ = int16_t(PING_VOLUME *
sinf(t) / fmaxf(1.0f, pow((abs(t)-1.5f) / 1.5f, 1.2f)));
}
// As of the next frame, we'll be recoding PING_FRAMES_TO_RECORD from
// the mic (pointless to start now as we can't record unsent audio).
_isSendingEchoPing = false;
qDebug("Send audio ping");
} else if (_pingFramesToRecord > 0) {
// Store input samples
int offset = BUFFER_LENGTH_SAMPLES_PER_CHANNEL * (
PING_FRAMES_TO_RECORD - _pingFramesToRecord);
memcpy(_echoSamplesLeft + offset,
inputLeft, BUFFER_LENGTH_SAMPLES_PER_CHANNEL * sizeof(int16_t));
--_pingFramesToRecord;
if (_pingFramesToRecord == 0) {
_pingAnalysisPending = true;
qDebug("Received ping echo");
}
}
}
static int findExtremum(int16_t const* samples, int length, int sign) {
int x0 = -1;
int y0 = -PING_VOLUME;
for (int x = 0; x < length; ++samples, ++x) {
int y = *samples * sign;
if (y > y0) {
x0 = x;
y0 = y;
}
}
return x0;
}
inline void Audio::analyzePing() {
// Determine extrema
int botAt = findExtremum(_echoSamplesLeft, PING_SAMPLES_TO_ANALYZE, -1);
if (botAt == -1) {
qDebug("Audio Ping: Minimum not found.");
return;
}
int topAt = findExtremum(_echoSamplesLeft, PING_SAMPLES_TO_ANALYZE, 1);
if (topAt == -1) {
qDebug("Audio Ping: Maximum not found.");
return;
}
// Determine peak amplitude - warn if low
int ampli = (_echoSamplesLeft[topAt] - _echoSamplesLeft[botAt]) / 2;
if (ampli < PING_MIN_AMPLI) {
qDebug("Audio Ping unreliable - low amplitude %d.", ampli);
}
// Determine period - warn if doesn't look like our signal
int halfPeriod = abs(topAt - botAt);
if (abs(halfPeriod-PING_HALF_PERIOD) > PING_MAX_PERIOD_DIFFERENCE) {
qDebug("Audio Ping unreliable - peak distance %d vs. %d", halfPeriod, PING_HALF_PERIOD);
}
// Ping is sent:
//
// ---[ record ]--[ play ]--- audio in space/time --->
// : : :
// : : ping: ->X<-
// : : :
// : : |+| (buffer end - signal center = t1-t0)
// : |<----------+
// : : : :
// : ->X<- (corresponding input buffer position t0)
// : : : :
// : : : :
// : : : :
// Next frame (we're recording from now on):
// : : :
// : - - --[ record ]--[ play ]------------------>
// : : : :
// : : |<-- (start of recording t1)
// : : :
// : : :
// At some frame, the signal is picked up:
// : : : :
// : : : :
// : : : V
// : : : - - --[ record ]--[ play ]---------->
// : V : :
// : |<--------->|
// |+|<------->| period + measured samples
//
// If we could pick up the signal at t0 we'd have zero round trip
// time - in this case we had recorded the output buffer instantly
// in its entirety (we can't - but there's the proper reference
// point). We know the number of samples from t1 and, knowing that
// data is streaming continuously, we know that t1-t0 is the distance
// of the characterisic point from the end of the buffer.
int delay = (botAt + topAt) / 2 + PING_PERIOD;
qDebug("\n| Audio Ping results:\n+----- ---- --- - - - - -\n"
"Delay = %d samples (%d ms)\nPeak amplitude = %d\n\n",
delay, (delay * 1000) / int(SAMPLE_RATE), ampli);
}
bool Audio::eventuallyAnalyzePing() {
if (! _pingAnalysisPending) {
return false;
}
_scope->inputPaused = true;
analyzePing();
_pingAnalysisPending = false;
return true;
}
#endif