overte/assignment-client/src/entities/EntityPriorityQueue.cpp
2017-09-29 11:34:36 -07:00

53 lines
2.4 KiB
C++

//
// EntityPriorityQueue.cpp
// assignment-client/src/entities
//
// Created by Andrew Meadows 2017.08.08
// Copyright 2017 High Fidelity, Inc.
//
// Distributed under the Apache License, Version 2.0.
// See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html
//
#include "EntityPriorityQueue.h"
const float PrioritizedEntity::DO_NOT_SEND = -1.0e-6f;
const float PrioritizedEntity::FORCE_REMOVE = -1.0e-5f;
const float PrioritizedEntity::WHEN_IN_DOUBT_PRIORITY = 1.0f;
void ConicalView::set(const ViewFrustum& viewFrustum) {
// The ConicalView has two parts: a central sphere (same as ViewFrustum) and a circular cone that bounds the frustum part.
// Why? Because approximate intersection tests are much faster to compute for a cone than for a frustum.
_position = viewFrustum.getPosition();
_direction = viewFrustum.getDirection();
// We cache the sin and cos of the half angle of the cone that bounds the frustum.
// (the math here is left as an exercise for the reader)
float A = viewFrustum.getAspectRatio();
float t = tanf(0.5f * viewFrustum.getFieldOfView());
_cosAngle = 1.0f / sqrtf(1.0f + (A * A + 1.0f) * (t * t));
_sinAngle = sqrtf(1.0f - _cosAngle * _cosAngle);
_radius = viewFrustum.getCenterRadius();
}
float ConicalView::computePriority(const AACube& cube) const {
glm::vec3 p = cube.calcCenter() - _position; // position of bounding sphere in view-frame
float d = glm::length(p); // distance to center of bounding sphere
float r = 0.5f * cube.getScale(); // radius of bounding sphere
if (d < _radius + r) {
return r;
}
// We check the angle between the center of the cube and the _direction of the view.
// If it is less than the sum of the half-angle from center of cone to outer edge plus
// the half apparent angle of the bounding sphere then it is in view.
//
// The math here is left as an exercise for the reader with the following hints:
// (1) We actually check the dot product of the cube's local position rather than the angle and
// (2) we take advantage of this trig identity: cos(A+B) = cos(A)*cos(B) - sin(A)*sin(B)
if (glm::dot(p, _direction) > sqrtf(d * d - r * r) * _cosAngle - r * _sinAngle) {
const float AVOID_DIVIDE_BY_ZERO = 0.001f;
return r / (d + AVOID_DIVIDE_BY_ZERO);
}
return PrioritizedEntity::DO_NOT_SEND;
}