// // SharedUtil.cpp // libraries/shared/src // // Created by Stephen Birarda on 2/22/13. // Copyright 2013 High Fidelity, Inc. // // Distributed under the Apache License, Version 2.0. // See the accompanying file LICENSE or http://www.apache.org/licenses/LICENSE-2.0.html // #include "SharedUtil.h" #include #include #include #include #include #include #include #ifdef _WIN32 #include #endif #ifdef Q_OS_WIN #include "CPUIdent.h" #endif #ifdef __APPLE__ #include #endif #include #include #include #include #include #include #include "NumericalConstants.h" #include "OctalCode.h" #include "SharedLogging.h" static qint64 usecTimestampNowAdjust = 0; // in usec void usecTimestampNowForceClockSkew(qint64 clockSkew) { ::usecTimestampNowAdjust = clockSkew; } static qint64 TIME_REFERENCE = 0; // in usec static std::once_flag usecTimestampNowIsInitialized; static QElapsedTimer timestampTimer; quint64 usecTimestampNow(bool wantDebug) { std::call_once(usecTimestampNowIsInitialized, [&] { TIME_REFERENCE = QDateTime::currentMSecsSinceEpoch() * USECS_PER_MSEC; // ms to usec timestampTimer.start(); }); quint64 now; quint64 nsecsElapsed = timestampTimer.nsecsElapsed(); quint64 usecsElapsed = nsecsElapsed / NSECS_PER_USEC; // nsec to usec // QElapsedTimer may not advance if the CPU has gone to sleep. In which case it // will begin to deviate from real time. We detect that here, and reset if necessary quint64 msecsCurrentTime = QDateTime::currentMSecsSinceEpoch(); quint64 msecsEstimate = (TIME_REFERENCE + usecsElapsed) / USECS_PER_MSEC; // usecs to msecs int possibleSkew = msecsEstimate - msecsCurrentTime; const int TOLERANCE = 10 * MSECS_PER_SECOND; // up to 10 seconds of skew is tolerated if (abs(possibleSkew) > TOLERANCE) { // reset our TIME_REFERENCE and timer TIME_REFERENCE = QDateTime::currentMSecsSinceEpoch() * USECS_PER_MSEC; // ms to usec timestampTimer.restart(); now = TIME_REFERENCE + ::usecTimestampNowAdjust; if (wantDebug) { qCDebug(shared) << "usecTimestampNow() - resetting QElapsedTimer. "; qCDebug(shared) << " msecsCurrentTime:" << msecsCurrentTime; qCDebug(shared) << " msecsEstimate:" << msecsEstimate; qCDebug(shared) << " possibleSkew:" << possibleSkew; qCDebug(shared) << " TOLERANCE:" << TOLERANCE; qCDebug(shared) << " nsecsElapsed:" << nsecsElapsed; qCDebug(shared) << " usecsElapsed:" << usecsElapsed; QDateTime currentLocalTime = QDateTime::currentDateTime(); quint64 msecsNow = now / 1000; // usecs to msecs QDateTime nowAsString; nowAsString.setMSecsSinceEpoch(msecsNow); qCDebug(shared) << " now:" << now; qCDebug(shared) << " msecsNow:" << msecsNow; qCDebug(shared) << " nowAsString:" << nowAsString.toString("yyyy-MM-dd hh:mm:ss.zzz"); qCDebug(shared) << " currentLocalTime:" << currentLocalTime.toString("yyyy-MM-dd hh:mm:ss.zzz"); } } else { now = TIME_REFERENCE + usecsElapsed + ::usecTimestampNowAdjust; } if (wantDebug) { QDateTime currentLocalTime = QDateTime::currentDateTime(); quint64 msecsNow = now / 1000; // usecs to msecs QDateTime nowAsString; nowAsString.setMSecsSinceEpoch(msecsNow); quint64 msecsTimeReference = TIME_REFERENCE / 1000; // usecs to msecs QDateTime timeReferenceAsString; timeReferenceAsString.setMSecsSinceEpoch(msecsTimeReference); qCDebug(shared) << "usecTimestampNow() - details... "; qCDebug(shared) << " TIME_REFERENCE:" << TIME_REFERENCE; qCDebug(shared) << " timeReferenceAsString:" << timeReferenceAsString.toString("yyyy-MM-dd hh:mm:ss.zzz"); qCDebug(shared) << " usecTimestampNowAdjust:" << usecTimestampNowAdjust; qCDebug(shared) << " nsecsElapsed:" << nsecsElapsed; qCDebug(shared) << " usecsElapsed:" << usecsElapsed; qCDebug(shared) << " now:" << now; qCDebug(shared) << " msecsNow:" << msecsNow; qCDebug(shared) << " nowAsString:" << nowAsString.toString("yyyy-MM-dd hh:mm:ss.zzz"); qCDebug(shared) << " currentLocalTime:" << currentLocalTime.toString("yyyy-MM-dd hh:mm:ss.zzz"); } return now; } float secTimestampNow() { static const auto START_TIME = usecTimestampNow(); const auto nowUsecs = usecTimestampNow() - START_TIME; const auto nowMsecs = nowUsecs / USECS_PER_MSEC; return (float)nowMsecs / MSECS_PER_SECOND; } float randFloat() { return (rand() % 10000)/10000.0f; } int randIntInRange (int min, int max) { return min + (rand() % ((max + 1) - min)); } float randFloatInRange (float min,float max) { return min + ((rand() % 10000)/10000.0f * (max-min)); } float randomSign() { return randomBoolean() ? -1.0 : 1.0; } unsigned char randomColorValue(int miniumum) { return miniumum + (rand() % (256 - miniumum)); } bool randomBoolean() { return rand() % 2; } bool shouldDo(float desiredInterval, float deltaTime) { return randFloat() < deltaTime / desiredInterval; } void outputBufferBits(const unsigned char* buffer, int length, QDebug* continuedDebug) { for (int i = 0; i < length; i++) { outputBits(buffer[i], continuedDebug); } } void outputBits(unsigned char byte, QDebug* continuedDebug) { QDebug debug = qDebug().nospace(); if (continuedDebug) { debug = *continuedDebug; debug.nospace(); } QString resultString; if (isalnum(byte)) { resultString.sprintf("[ %d (%c): ", byte, byte); } else { resultString.sprintf("[ %d (0x%x): ", byte, byte); } debug << qPrintable(resultString); for (int i = 0; i < 8; i++) { resultString.sprintf("%d", byte >> (7 - i) & 1); debug << qPrintable(resultString); } debug << " ]"; } int numberOfOnes(unsigned char byte) { static const int nbits[256] = { 0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3, 4,3,4,4,5,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4, 4,5,3,4,4,5,4,5,5,6,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2, 3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,2,3,3,4,3,4,4,5,3,4,4,5, 4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,1,2,2,3,2,3,3, 4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,2,3, 3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5, 6,6,7,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6, 4,5,5,6,5,6,6,7,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5, 6,5,6,6,7,5,6,6,7,6,7,7,8 }; return nbits[(unsigned char) byte]; } bool oneAtBit(unsigned char byte, int bitIndex) { return (byte >> (7 - bitIndex) & 1); } void setAtBit(unsigned char& byte, int bitIndex) { byte |= (1 << (7 - bitIndex)); } void clearAtBit(unsigned char& byte, int bitIndex) { if (oneAtBit(byte, bitIndex)) { byte -= (1 << (7 - bitIndex)); } } int getSemiNibbleAt(unsigned char byte, int bitIndex) { return (byte >> (6 - bitIndex) & 3); // semi-nibbles store 00, 01, 10, or 11 } int getNthBit(unsigned char byte, int ordinal) { const int ERROR_RESULT = -1; const int MIN_ORDINAL = 1; const int MAX_ORDINAL = 8; if (ordinal < MIN_ORDINAL || ordinal > MAX_ORDINAL) { return ERROR_RESULT; } int bitsSet = 0; for (int bitIndex = 0; bitIndex < MAX_ORDINAL; bitIndex++) { if (oneAtBit(byte, bitIndex)) { bitsSet++; } if (bitsSet == ordinal) { return bitIndex; } } return ERROR_RESULT; } void setSemiNibbleAt(unsigned char& byte, int bitIndex, int value) { //assert(value <= 3 && value >= 0); byte |= ((value & 3) << (6 - bitIndex)); // semi-nibbles store 00, 01, 10, or 11 } bool isInEnvironment(const char* environment) { char* environmentString = getenv("HIFI_ENVIRONMENT"); return (environmentString && strcmp(environmentString, environment) == 0); } ////////////////////////////////////////////////////////////////////////////////////////// // Function: getCmdOption() // Description: Handy little function to tell you if a command line flag and option was // included while launching the application, and to get the option value // immediately following the flag. For example if you ran: // ./app -i filename.txt // then you're using the "-i" flag to set the input file name. // Usage: char * inputFilename = getCmdOption(argc, argv, "-i"); // Complaints: Brad :) const char* getCmdOption(int argc, const char * argv[],const char* option) { // check each arg for (int i=0; i < argc; i++) { // if the arg matches the desired option if (strcmp(option,argv[i])==0 && i+1 < argc) { // then return the next option return argv[i+1]; } } return NULL; } ////////////////////////////////////////////////////////////////////////////////////////// // Function: getCmdOption() // Description: Handy little function to tell you if a command line option flag was // included while launching the application. Returns bool true/false // Usage: bool wantDump = cmdOptionExists(argc, argv, "-d"); // Complaints: Brad :) bool cmdOptionExists(int argc, const char * argv[],const char* option) { // check each arg for (int i=0; i < argc; i++) { // if the arg matches the desired option if (strcmp(option,argv[i])==0) { // then return the next option return true; } } return false; } void sharedMessageHandler(QtMsgType type, const QMessageLogContext& context, const QString &message) { fprintf(stdout, "%s", message.toLocal8Bit().constData()); } unsigned char* pointToOctalCode(float x, float y, float z, float s) { return pointToVoxel(x, y, z, s); } /// Given a universal point with location x,y,z this will return the voxel /// voxel code corresponding to the closest voxel which encloses a cube with /// lower corners at x,y,z, having side of length S. /// The input values x,y,z range 0.0 <= v < 1.0 /// IMPORTANT: The voxel is returned to you a buffer which you MUST delete when you are /// done with it. unsigned char* pointToVoxel(float x, float y, float z, float s, unsigned char r, unsigned char g, unsigned char b ) { // special case for size 1, the root node if (s >= 1.0f) { unsigned char* voxelOut = new unsigned char; *voxelOut = 0; return voxelOut; } float xTest, yTest, zTest, sTest; xTest = yTest = zTest = sTest = 0.5f; // First determine the voxelSize that will properly encode a // voxel of size S. unsigned int voxelSizeInOctets = 1; while (sTest > s) { sTest /= 2.0f; voxelSizeInOctets++; } auto voxelSizeInBytes = bytesRequiredForCodeLength(voxelSizeInOctets); // (voxelSizeInBits/8)+1; auto voxelBufferSize = voxelSizeInBytes + sizeof(rgbColor); // 3 for color // allocate our resulting buffer unsigned char* voxelOut = new unsigned char[voxelBufferSize]; // first byte of buffer is always our size in octets voxelOut[0]=voxelSizeInOctets; sTest = 0.5f; // reset sTest so we can do this again. unsigned char byte = 0; // we will be adding coding bits here int bitInByteNDX = 0; // keep track of where we are in byte as we go int byteNDX = 1; // keep track of where we are in buffer of bytes as we go unsigned int octetsDone = 0; // Now we actually fill out the voxel code while (octetsDone < voxelSizeInOctets) { if (x >= xTest) { // byte = (byte << 1) | true; xTest += sTest/2.0f; } else { // byte = (byte << 1) | false; xTest -= sTest/2.0f; } bitInByteNDX++; // If we've reached the last bit of the byte, then we want to copy this byte // into our buffer. And get ready to start on a new byte if (bitInByteNDX == 8) { voxelOut[byteNDX]=byte; byteNDX++; bitInByteNDX=0; byte=0; } if (y >= yTest) { // byte = (byte << 1) | true; yTest += sTest/2.0f; } else { // byte = (byte << 1) | false; yTest -= sTest/2.0f; } bitInByteNDX++; // If we've reached the last bit of the byte, then we want to copy this byte // into our buffer. And get ready to start on a new byte if (bitInByteNDX == 8) { voxelOut[byteNDX]=byte; byteNDX++; bitInByteNDX=0; byte=0; } if (z >= zTest) { // byte = (byte << 1) | true; zTest += sTest/2.0f; } else { // byte = (byte << 1) | false; zTest -= sTest/2.0f; } bitInByteNDX++; // If we've reached the last bit of the byte, then we want to copy this byte // into our buffer. And get ready to start on a new byte if (bitInByteNDX == 8) { voxelOut[byteNDX]=byte; byteNDX++; bitInByteNDX=0; byte=0; } octetsDone++; sTest /= 2.0f; } // If we've got here, and we didn't fill the last byte, we need to zero pad this // byte before we copy it into our buffer. if (bitInByteNDX > 0 && bitInByteNDX < 8) { // Pad the last byte while (bitInByteNDX < 8) { byte = (byte << 1) | false; bitInByteNDX++; } // Copy it into our output buffer voxelOut[byteNDX]=byte; byteNDX++; } // copy color data voxelOut[byteNDX]=r; voxelOut[byteNDX+1]=g; voxelOut[byteNDX+2]=b; return voxelOut; } void printVoxelCode(unsigned char* voxelCode) { unsigned char octets = voxelCode[0]; unsigned int voxelSizeInBits = octets*3; unsigned int voxelSizeInBytes = (voxelSizeInBits/8)+1; unsigned int voxelSizeInOctets = (voxelSizeInBits/3); unsigned int voxelBufferSize = voxelSizeInBytes+1+3; // 1 for size, 3 for color qCDebug(shared, "octets=%d",octets); qCDebug(shared, "voxelSizeInBits=%d",voxelSizeInBits); qCDebug(shared, "voxelSizeInBytes=%d",voxelSizeInBytes); qCDebug(shared, "voxelSizeInOctets=%d",voxelSizeInOctets); qCDebug(shared, "voxelBufferSize=%d",voxelBufferSize); for(unsigned int i=0; i < voxelBufferSize; i++) { QDebug voxelBufferDebug = qDebug(); voxelBufferDebug << "i =" << i; outputBits(voxelCode[i], &voxelBufferDebug); } } #ifdef _WIN32 void usleep(int waitTime) { const quint64 BUSY_LOOP_USECS = 2000; quint64 compTime = waitTime + usecTimestampNow(); quint64 compTimeSleep = compTime - BUSY_LOOP_USECS; while (true) { if (usecTimestampNow() < compTimeSleep) { QThread::msleep(1); } if (usecTimestampNow() >= compTime) { break; } } } #endif // Inserts the value and key into three arrays sorted by the key array, the first array is the value, // the second array is a sorted key for the value, the third array is the index for the value in it original // non-sorted array // returns -1 if size exceeded // originalIndexArray is optional int insertIntoSortedArrays(void* value, float key, int originalIndex, void** valueArray, float* keyArray, int* originalIndexArray, int currentCount, int maxCount) { if (currentCount < maxCount) { int i = 0; if (currentCount > 0) { while (i < currentCount && key > keyArray[i]) { i++; } // i is our desired location // shift array elements to the right if (i < currentCount && i+1 < maxCount) { memmove(&valueArray[i + 1], &valueArray[i], sizeof(void*) * (currentCount - i)); memmove(&keyArray[i + 1], &keyArray[i], sizeof(float) * (currentCount - i)); if (originalIndexArray) { memmove(&originalIndexArray[i + 1], &originalIndexArray[i], sizeof(int) * (currentCount - i)); } } } // place new element at i valueArray[i] = value; keyArray[i] = key; if (originalIndexArray) { originalIndexArray[i] = originalIndex; } return currentCount + 1; } return -1; // error case } int removeFromSortedArrays(void* value, void** valueArray, float* keyArray, int* originalIndexArray, int currentCount, int maxCount) { int i = 0; if (currentCount > 0) { while (i < currentCount && value != valueArray[i]) { i++; } if (value == valueArray[i] && i < currentCount) { // i is the location of the item we were looking for // shift array elements to the left memmove(&valueArray[i], &valueArray[i + 1], sizeof(void*) * ((currentCount-1) - i)); memmove(&keyArray[i], &keyArray[i + 1], sizeof(float) * ((currentCount-1) - i)); if (originalIndexArray) { memmove(&originalIndexArray[i], &originalIndexArray[i + 1], sizeof(int) * ((currentCount-1) - i)); } return currentCount-1; } } return -1; // error case } float SMALL_LIMIT = 10.0f; float LARGE_LIMIT = 1000.0f; int packFloatRatioToTwoByte(unsigned char* buffer, float ratio) { // if the ratio is less than 10, then encode it as a positive number scaled from 0 to int16::max() int16_t ratioHolder; if (ratio < SMALL_LIMIT) { const float SMALL_RATIO_CONVERSION_RATIO = (std::numeric_limits::max() / SMALL_LIMIT); ratioHolder = floorf(ratio * SMALL_RATIO_CONVERSION_RATIO); } else { const float LARGE_RATIO_CONVERSION_RATIO = std::numeric_limits::min() / LARGE_LIMIT; ratioHolder = floorf((std::min(ratio,LARGE_LIMIT) - SMALL_LIMIT) * LARGE_RATIO_CONVERSION_RATIO); } memcpy(buffer, &ratioHolder, sizeof(ratioHolder)); return sizeof(ratioHolder); } int unpackFloatRatioFromTwoByte(const unsigned char* buffer, float& ratio) { int16_t ratioHolder; memcpy(&ratioHolder, buffer, sizeof(ratioHolder)); // If it's positive, than the original ratio was less than SMALL_LIMIT if (ratioHolder > 0) { ratio = (ratioHolder / (float) std::numeric_limits::max()) * SMALL_LIMIT; } else { // If it's negative, than the original ratio was between SMALL_LIMIT and LARGE_LIMIT ratio = ((ratioHolder / (float) std::numeric_limits::min()) * LARGE_LIMIT) + SMALL_LIMIT; } return sizeof(ratioHolder); } int packClipValueToTwoByte(unsigned char* buffer, float clipValue) { // Clip values must be less than max signed 16bit integers assert(clipValue < std::numeric_limits::max()); int16_t holder; // if the clip is less than 10, then encode it as a positive number scaled from 0 to int16::max() if (clipValue < SMALL_LIMIT) { const float SMALL_RATIO_CONVERSION_RATIO = (std::numeric_limits::max() / SMALL_LIMIT); holder = floorf(clipValue * SMALL_RATIO_CONVERSION_RATIO); } else { // otherwise we store it as a negative integer holder = -1 * floorf(clipValue); } memcpy(buffer, &holder, sizeof(holder)); return sizeof(holder); } int unpackClipValueFromTwoByte(const unsigned char* buffer, float& clipValue) { int16_t holder; memcpy(&holder, buffer, sizeof(holder)); // If it's positive, than the original clipValue was less than SMALL_LIMIT if (holder > 0) { clipValue = (holder / (float) std::numeric_limits::max()) * SMALL_LIMIT; } else { // If it's negative, than the original holder can be found as the opposite sign of holder clipValue = -1.0f * holder; } return sizeof(holder); } int packFloatToByte(unsigned char* buffer, float value, float scaleBy) { quint8 holder; const float CONVERSION_RATIO = (255 / scaleBy); holder = floorf(value * CONVERSION_RATIO); memcpy(buffer, &holder, sizeof(holder)); return sizeof(holder); } int unpackFloatFromByte(const unsigned char* buffer, float& value, float scaleBy) { quint8 holder; memcpy(&holder, buffer, sizeof(holder)); value = ((float)holder / (float) 255) * scaleBy; return sizeof(holder); } unsigned char debug::DEADBEEF[] = { 0xDE, 0xAD, 0xBE, 0xEF }; int debug::DEADBEEF_SIZE = sizeof(DEADBEEF); void debug::setDeadBeef(void* memoryVoid, int size) { unsigned char* memoryAt = (unsigned char*)memoryVoid; int deadBeefSet = 0; int chunks = size / DEADBEEF_SIZE; for (int i = 0; i < chunks; i++) { memcpy(memoryAt + (i * DEADBEEF_SIZE), DEADBEEF, DEADBEEF_SIZE); deadBeefSet += DEADBEEF_SIZE; } memcpy(memoryAt + deadBeefSet, DEADBEEF, size - deadBeefSet); } void debug::checkDeadBeef(void* memoryVoid, int size) { assert(memcmp((unsigned char*)memoryVoid, DEADBEEF, std::min(size, DEADBEEF_SIZE)) != 0); } QString formatUsecTime(quint64 usecs, int prec) { static const quint64 USECS_PER_MINUTE = USECS_PER_SECOND * 60; static const quint64 USECS_PER_HOUR = USECS_PER_MINUTE * 60; static const quint64 TWO_HOURS = USECS_PER_HOUR * 2; QString result; if (usecs > TWO_HOURS) { result = QString::number(usecs / USECS_PER_HOUR) + "hrs"; } else if (usecs > USECS_PER_MINUTE) { result = QString::number(usecs / USECS_PER_MINUTE) + "min"; } else if (usecs > USECS_PER_SECOND) { result = QString::number(usecs / USECS_PER_SECOND) + 's'; } else if (usecs > USECS_PER_MSEC) { result = QString::number(usecs / USECS_PER_MSEC) + "ms"; } else { result = QString::number(usecs) + "us"; } return result; } QString formatUsecTime(qint64 usecs, int prec) { static const qint64 USECS_PER_MSEC = 1000; static const qint64 USECS_PER_SECOND = 1000 * USECS_PER_MSEC; static const qint64 USECS_PER_MINUTE = USECS_PER_SECOND * 60; static const qint64 USECS_PER_HOUR = USECS_PER_MINUTE * 60; static const qint64 TWO_HOURS = USECS_PER_HOUR * 2; QString result; if (usecs > TWO_HOURS || usecs < -TWO_HOURS) { result = QString::number(usecs / USECS_PER_HOUR) + "hrs"; } else if (usecs > USECS_PER_MINUTE || usecs < -USECS_PER_MINUTE) { result = QString::number(usecs / USECS_PER_MINUTE) + "min"; } else if (usecs > USECS_PER_SECOND || usecs < -USECS_PER_SECOND) { result = QString::number(usecs / USECS_PER_SECOND) + 's'; } else if (usecs > USECS_PER_MSEC || usecs < -USECS_PER_MSEC) { result = QString::number(usecs / USECS_PER_MSEC) + "ms"; } else { result = QString::number(usecs) + "us"; } return result; } QString formatUsecTime(float usecs, int prec) { return formatUsecTime((double)usecs, prec); } QString formatUsecTime(double usecs, int prec) { static const double USECS_PER_MSEC = 1000.0; static const double USECS_PER_SECOND = 1000.0 * USECS_PER_MSEC; static const double USECS_PER_MINUTE = USECS_PER_SECOND * 60.0; static const double USECS_PER_HOUR = USECS_PER_MINUTE * 60.0; static const double TWO_HOURS = USECS_PER_HOUR * 2; QString result; if (usecs > TWO_HOURS || usecs < -TWO_HOURS) { result = QString::number(usecs / USECS_PER_HOUR, 'f', prec) + "hrs"; } else if (usecs > USECS_PER_MINUTE || usecs < -USECS_PER_MINUTE) { result = QString::number(usecs / USECS_PER_MINUTE, 'f', prec) + "min"; } else if (usecs > USECS_PER_SECOND || usecs < -USECS_PER_SECOND) { result = QString::number(usecs / USECS_PER_SECOND, 'f', prec) + 's'; } else if (usecs > USECS_PER_MSEC || usecs < -USECS_PER_MSEC) { result = QString::number(usecs / USECS_PER_MSEC, 'f', prec) + "ms"; } else { result = QString::number(usecs, 'f', prec) + "us"; } return result; } QString formatSecondsElapsed(float seconds) { QString result; const float SECONDS_IN_DAY = 60.0f * 60.0f * 24.0f; if (seconds > SECONDS_IN_DAY) { float days = floor(seconds / SECONDS_IN_DAY); float rest = seconds - (days * SECONDS_IN_DAY); result = QString::number((int)days); if (days > 1.0f) { result += " days "; } else { result += " day "; } result += QDateTime::fromTime_t(rest).toUTC().toString("h 'hours' m 'minutes' s 'seconds'"); } else { result = QDateTime::fromTime_t(seconds).toUTC().toString("h 'hours' m 'minutes' s 'seconds'"); } return result; } bool similarStrings(const QString& stringA, const QString& stringB) { QStringList aWords = stringA.split(" "); QStringList bWords = stringB.split(" "); float aWordsInB = 0.0f; foreach(QString aWord, aWords) { if (bWords.contains(aWord)) { aWordsInB += 1.0f; } } float bWordsInA = 0.0f; foreach(QString bWord, bWords) { if (aWords.contains(bWord)) { bWordsInA += 1.0f; } } float similarity = 0.5f * (aWordsInB / (float)bWords.size()) + 0.5f * (bWordsInA / (float)aWords.size()); const float SIMILAR_ENOUGH = 0.5f; // half the words the same is similar enough for us return similarity >= SIMILAR_ENOUGH; } void disableQtBearerPoll() { // to work around the Qt constant wireless scanning, set the env for polling interval very high const QByteArray EXTREME_BEARER_POLL_TIMEOUT = QString::number(INT_MAX).toLocal8Bit(); qputenv("QT_BEARER_POLL_TIMEOUT", EXTREME_BEARER_POLL_TIMEOUT); } void printSystemInformation() { // Write system information to log qDebug() << "Build Information"; qDebug().noquote() << "\tBuild ABI: " << QSysInfo::buildAbi(); qDebug().noquote() << "\tBuild CPU Architecture: " << QSysInfo::buildCpuArchitecture(); qDebug().noquote() << "System Information"; qDebug().noquote() << "\tProduct Name: " << QSysInfo::prettyProductName(); qDebug().noquote() << "\tCPU Architecture: " << QSysInfo::currentCpuArchitecture(); qDebug().noquote() << "\tKernel Type: " << QSysInfo::kernelType(); qDebug().noquote() << "\tKernel Version: " << QSysInfo::kernelVersion(); auto macVersion = QSysInfo::macVersion(); if (macVersion != QSysInfo::MV_None) { qDebug() << "\tMac Version: " << macVersion; } auto windowsVersion = QSysInfo::windowsVersion(); if (windowsVersion != QSysInfo::WV_None) { qDebug() << "\tWindows Version: " << windowsVersion; } #ifdef Q_OS_WIN SYSTEM_INFO si; GetNativeSystemInfo(&si); qDebug() << "SYSTEM_INFO"; qDebug().noquote() << "\tOEM ID: " << si.dwOemId; qDebug().noquote() << "\tProcessor Architecture: " << si.wProcessorArchitecture; qDebug().noquote() << "\tProcessor Type: " << si.dwProcessorType; qDebug().noquote() << "\tProcessor Level: " << si.wProcessorLevel; qDebug().noquote() << "\tProcessor Revision: " << QString("0x%1").arg(si.wProcessorRevision, 4, 16, QChar('0')); qDebug().noquote() << "\tNumber of Processors: " << si.dwNumberOfProcessors; qDebug().noquote() << "\tPage size: " << si.dwPageSize << " Bytes"; qDebug().noquote() << "\tMin Application Address: " << QString("0x%1").arg(qulonglong(si.lpMinimumApplicationAddress), 16, 16, QChar('0')); qDebug().noquote() << "\tMax Application Address: " << QString("0x%1").arg(qulonglong(si.lpMaximumApplicationAddress), 16, 16, QChar('0')); const double BYTES_TO_MEGABYTE = 1.0 / (1024 * 1024); qDebug() << "MEMORYSTATUSEX"; MEMORYSTATUSEX ms; ms.dwLength = sizeof(ms); if (GlobalMemoryStatusEx(&ms)) { qDebug().noquote() << QString("\tCurrent System Memory Usage: %1%").arg(ms.dwMemoryLoad); qDebug().noquote() << QString("\tAvail Physical Memory: %1 MB").arg(ms.ullAvailPhys * BYTES_TO_MEGABYTE, 20, 'f', 2); qDebug().noquote() << QString("\tTotal Physical Memory: %1 MB").arg(ms.ullTotalPhys * BYTES_TO_MEGABYTE, 20, 'f', 2); qDebug().noquote() << QString("\tAvail in Page File: %1 MB").arg(ms.ullAvailPageFile * BYTES_TO_MEGABYTE, 20, 'f', 2); qDebug().noquote() << QString("\tTotal in Page File: %1 MB").arg(ms.ullTotalPageFile * BYTES_TO_MEGABYTE, 20, 'f', 2); qDebug().noquote() << QString("\tAvail Virtual Memory: %1 MB").arg(ms.ullAvailVirtual * BYTES_TO_MEGABYTE, 20, 'f', 2); qDebug().noquote() << QString("\tTotal Virtual Memory: %1 MB").arg(ms.ullTotalVirtual * BYTES_TO_MEGABYTE, 20, 'f', 2); } else { qDebug() << "\tFailed to retrieve memory status: " << GetLastError(); } qDebug() << "CPUID"; qDebug() << "\tCPU Vendor: " << CPUIdent::Vendor().c_str(); qDebug() << "\tCPU Brand: " << CPUIdent::Brand().c_str(); for (auto& feature : CPUIdent::getAllFeatures()) { qDebug().nospace().noquote() << "\t[" << (feature.supported ? "x" : " ") << "] " << feature.name.c_str(); } #endif qDebug() << "Environment Variables"; // List of env variables to include in the log. For privacy reasons we don't send all env variables. const QStringList envWhitelist = { "QTWEBENGINE_REMOTE_DEBUGGING" }; auto envVariables = QProcessEnvironment::systemEnvironment(); for (auto& env : envWhitelist) { qDebug().noquote().nospace() << "\t" << (envVariables.contains(env) ? " = " + envVariables.value(env) : " NOT FOUND"); } }